SHARE PROGRAM
LIBRARY AGENCY

HHHHHHHHHHHHH

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
5555555555555

SHARE PROGRAM LIBRARY SUBMITTAL FORM : SHARE PROGRAM LIBRARY AGENCY

Triangle Universities Computation Center
m ‘ Pﬁst offlce -BOX 12076
Research Triangle Park, North Carolina USA 27799

SPLA CONTROL NUMBER:

This form should be completed and submitted with the program package to the SHARE Program Library Agency at the ad-
dress shown above. Standards and instructions for submitting programs are in the SHARE Reference Manual, Section 6.

{1} Program Number {(to be filled by SPLA}. 5“]0'[),_.. \\ l’\" QDL\'

" (2} Title of Program SIMCOMP
(3) System Typels} {Machirel. . . Ce e e . IBM 370/14‘8
{4) Search Keyls)« . . « « « o . . FILE 1 PROGRAM SOURCE DECK
SPRG. IN COLS. 1 - 72 '
368 - 80 BYTE RECORDS (BLOCKED AT 3120)
_ TAPE MARK EQF _
(5) Proéramming Systems/Languages IBM OS/PLL{F) or PL1 QPTIMIZER

(6} Primary Subject Code . L e e e e e e e TRAINING
(7} Minimum Systam Requirements QS8 PL1L, PL1 TRANSIENT LIBRARY, 256K STORAGE

(8) New (N) or Revision {R} {if revision, show prior Program Number in ltem 1} NEW

(9 Date of Submittal e oo e e e February 27, 1981
{10} Documentation (number of original pages submitted) 18

{11) Author's Name and Address PAUL K, DEAN

INGERSOLL MILLING MAGHINE COMPANY
707 FULTON_AVENUE _
ROCKFORD, IL 6110l

DISCLAIMER

Friangle Unversties Su.‘.‘,,'th"ﬂn Canter ‘(Téjuctec(}
solely as the distribution agent for contri
sarves ot ocnainlain them. They

T —
programs < - ::ntiﬂi‘v in the originat form sub-

{12) Direct Technical Inguiries to Name & Address
. {if different than Author)

istriputed Lo
ar_e“ Ts‘inbt’!;:h u:*mr Naitnar YUICO nor SHARE, INC.,
mitted-by e cod or TmeEd. as to the

makes any warraniy. expre ?
anptrmentation, function, or peiformance of the con

tributed programs.

{13) Submitter's Installation Membership Code ING

{14) Abstract {(should contain sufficient information for a reader to determine the value of the program). Listed on the re-
verse side of this form are subjects which may serve as a guide for a descriptive abstract.

SPLA 1001 Ravised 11-76

SHARE PROGRAM LIBRARY SUBMITTAL FORM

Subject Guide:

Purpose

. Praograrmming Language used

Version and modification fevel or refease number
. Field of application

Type of routine {main program, subroutine, etc.)
Specific description of machine requirements

Cal U = A

SIMCOMP is a computer training aid that helps novice programmers develop

a "feel" for how a computer works, The program simulates a small computer

that duplicates, on a simple scale, the basic operations of the larger

computer. A student using SIMCOMP enters a program in "object code”

and the program is executed according to the code entered. In this system,

errors are. diagnoéed rather than "bombing"” the system as can happen when

mistakes are made in programming a microprocessor,

SIMCOMP is written in OS8/PLl1. It can be compiled using either the

0S/PL1(F) compiler or the OS/PLl Optimizing :compiler. Simcomp is a main

program routine, using about 256K of memory. This is version 1,1 of

SIMCOMP .,
DISCLAIMER

Trlangle Unlvérsilies Compuanon CEneT (TUCeY
serves solely as the distribution agent tor contributed
_nronrams. and does nat fusl or maintain them. They
are distributed ornoptizity in the ariginal form SUD-
mitted by the authar, Meither TUCC nor SHARE, INGC.,
makes any warraniy exoressed gr_implied as to the
documentation. function, or performance of the con-
tributed programs.

{Please attach additional pages if necessary} Total pages attached

- An ‘'Acknowledgement of Assistance’ statement must be attached to this Submittal Form,

Permission to Publish
| hereby give the SHARE Program Library Agency permission to reprint, reproduce, and distribute this program’

A T - 7 -
{15) Signature of Submitter and Date oS et A/?(ST g LT g
{15) Signature of instaliation Addressee 7,%— P/Q’

SeLa 1001 tR) Revised 11-76

xXi

TAPE KEY

The source file may be loaded using the IBM utility IEBCOPY. The tape file
description is: DSN=SOURCE,LABEL=(1,NL),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3]20).

FILE 1 PROGRAM SOURCE DECK

SPRG. IN COLS. 1 - 72
368 80-BYTE RECORDS (BLOCKED AT 3120)

TAPE MARK EOF

BASIC FACTS ABOUT SIMCOMP

SIMCOMP is a computer program that simulates the operation
of an actual computer. It is not necessary that you understand the
program itself, but in learning what it does, you will learn how a
"real' computer works.

SIMCOMP operates on the stored program principle with
direct addressing., This means a program is stored in the computer's
memory along with any data used during the program’s execution,
The user states explicitly the memory location used by the computer.

The programs you will be writing for SIMCOMP will be written
in machine code, which means you will be talking directly to the
computer. H1gher level computer languages, like BASIC and PL/],
are written in an English~like form which must be converted to
machine code by the computer, but which the user finds much easier
to work with,

The computer is composed of five basic parts, which are
diagramed below.

MEMORY
(100 words)

INPUT _%r

ouTPUT

CPU ‘ GPR

IAR -

The Central Processing Unit, or CPU, directs all operations

- of the computer. It interprets the instructions the computer receives,
and coordinates all the processing that goes on. In short, the CPU
acts like the '"brains" of the computer.

The Instruction Address Register, or IAR, contains the location,
or address, of the current instruction being acted upon. The IAR is
always pointed to zero at the start of the program. It is automatically
incremented by one after each instruction to bring up, or fetch, the
next instruction. There is an exception to this. In a branch instruction,
the number in the IAR is set directly by the instruction. You will learn
more about branching and other instructions later on.

The Memory in SIMCOMP contains 100 locations, sometimes
called words, in which to store the instructions and data of a program.
Normally, the instructions are stored in the lower memory locations and
the data is stored in the upper memory locations. The memory can be
manipulated during a program by using a read or store instruction.

The General Purpose Register, or GPR, is the register where 2all
arithmetic takes place. It is used to move data from one memory
location to another. The GPR is the communicator between the CPU
and data stored in the memory, SIMCOMP has one GPR; some larger
computers may have as many as 16 general purpose registers.

RULES FOR USING SIMCOMP

What happens when SIMCOMP is given a program to execute?
First, the computer must store the program in its memory, because
SIMCOMP operates on the stored program principle. Input to the
computer, which is keypunched on computer data cards, is written
in an object code which is the "language' SIMCOMP uses. When the
program is loaded in the computer (stored in its memory), the IAR
is set to zero and the computer begins execution of the program.

The program runs and, if there were no errors in i, you get your
results, '

: The input format for SIMCOMP programs takes the following
form. Columns 2 & 3 of the data card hold a 2 digit number that
gives the memory location for that instruction. Columns 4, 5 & 6
are left blank., Columns 7 thru 1l hold the object code. The first
two digits of the object code are the operation code, or opcode,
which detail the particular instruction to be executed. The last
three digits of the object code hold either an address in memory
or an immediate data integer. Columns 12 thru 19 are left blank.
Columns 20 thru 49 are set aside for comments.

Comments are used to describe an instruction to make it more
readable to humans. A comment must appear on each card, Without
it, the program will run but SIMCOMP will issue a warning. Comments
document each step of the program so the user knows what the steps
are for.

If the proper numbers are not in the proper columns an error
will occur. Keypunch your data cards carefully; most errors in
SIMCOMP programs are the result of incorrectly typed data cards.

The last card of the program must be:
999 99999 END
This signifies, "End of the program, data follows". If this card
is left out, the program will not run and an error will be issued.

On the following page is a diagram showing the positions of
each step of a SIMCOMP instruction. It will be useful as a coding
sheet for your first program. Extra coding sheets are at the back
of the book

SIMNCONP
LGCR- OBJECT
TION CODE DESCRIPTION
2 3 71 8l 9011 201211222 342412526(27128129130131132133134135 3813914014 1142|14314414514514 71481481
END STATEMENT
LOCR- OBJECT
TION CODE DESC.
a3 71 & gl1oiL1 22

USING THE OPCODES AND INSTRUCTIONS

The READ and PRINT Instructions---Opcodes 50 & 60

In order for a computer to be useful for batch processing,
there must be a method of getting data in and out of the computer.
This is accomplished by using the READ and PRINT Opcodes
(50 & 60).

Opcode 50 is used to read data from the input stream. Data
for the program should be punched on cards following the 999 99999 END
statement. Each time a READ opcode is encountered, the next card in
the data stream is scanned for a number, This number is then placed
into memory in the location specified by the instruction. The previous
contents of that location is lost.

Here's a sample READ instruction:
00 50099 Read number into location 99

Once data is read in and processed, there needs to be a method
of obtaining the results from the computer. The PRINT opcode (60) is
used for this purpose. The PRINT instruction simply prints the
contents of the specified memory location, A new line is printed for
each PRINT instruction encountered. The content of the memory
location is not changed by a2 PRINT instruction,

A diagnostic and debugging aid that may be used in developing
and testing a program is the DUMP opcode (61). The DUMP instruction
takes the form 61000. This instruction will cause the contents of all
- 100 memory locations to be printed.

SIMCOMP will print a maximum of 100 lines for each job. This
is to help avoid enless PRINT loops. Each line printed is counted as
one, and each dump is counted as ten in calculating the total lines.

If 2 program attempts to print more than 100 lines, a diagnostic will
be issued and the job will be terminated.

The following is a sample program using the READ, PRINT
and DUMP instructions. Enterprising students wishing to view the
output may want to keypunch and run the program.

SAMPLE PROGRAM #1

00 99000 SAMPLE PROGRAM USING READ,
01 98000 PRINT AND DUMP
02 50099 READ X
03 60099 PRINT X
04 50098 READ Y
05 60098 PRINT Y
06 50097 READ Z
07 60097 PRINT Z
08 61000 REQUEST A MEMORY DUMP
09 00000 STOP
999 99988 END

Put your data, numbers for X, Y, and Z, on three cards
following the END statement.

The LOAD and STORE instructions---Opcodes 10 & 90

Using the 50 opcode, data is read into the memory from the
input stream., Once the data is in memory, it must be manijpulated
in order to process the data according to our needs. The LOAD
instruction is used to copy the data in memory into the GPR (General
Purpose Register) through which all internal data manipulation takes
place. - '

The LOAD instruction takes this form:
00 10099 Load GPR with contents of location 99

When a LOAD instruction is executed, the old contents of the
GPR is lost, but the contents of the specified memory location
remains unchanged. The data from the memory copied to the GPR
is thus available for use.

Once a number is loaded into the GPR, it may be stored into a
memory location, or it may be manipulated using arithmetic instruc-
tions, which we will discuss later on.

The STORE instruction, opcode 90, takes the form:

00 90099 Store GPR into location 99

A simple LOAD and STORE is an elementary operation, It is
useful when you need 2 copies of the same number. in memory. The
STORE may also be used after any operation on the GPR in which
the results need to be saved or printed. (Remember: PRINT works
only from memory, not from the GPR.)

A sample program using the LOAD and STORE instructions
follows.

SAMPLE PROGRAM #2

00 99000 SAMPLE PROGRAM USING LOAD AND STORE
01 50099 READ X ‘
02 - 60099 PRINT X
03 50098 READ Y
04 60098 PRINT Y
05 10099 LOAD X INTO GPR
06 90090 STORE X INTO L.OCATION 90
07 10098 LOAD Y INTO GPR
08 90091 STORE Y INTO LOCATION 91
09 10099 LOAD X INTO GPR
10 90050 STORE X INTO LOCATION 50
)3 61000 REQUEST A MEMORY DUMP
12 00000 STOP

999 99999 END

The student is advised to keypunch and run the program,
Careful study of the output, especially the memory dump, will
facilitate understanding of the LOAD and STORE processes.

The ARITHMETIC Opcodes---(20, 30, 40 & 70)

These opcodes are used to operate mathematically on the data
in the GPR. The operations themselves are self-explanatory; how-
ever, there are some ideas to bear in mind regarding their implemen-
tation.

The first thing to remember is that SIMCOMP is an integer
machine. This means that 5/2 = 2! This point must be kept in
mind or the results of a program could be misleading or totally
wrong.

The second idea to be brought out is the actual manner in which
SIMCOMP executes arithmetic., The instructions take the form:

00 20099 AdQgd contents of location 99 to GPR
- -

SIMCOMP will add the contents of location 99 to that of the GPR.
The results will be placed in the GPR. The previous contents of the
GPR are lost and the contents of the memory location remain unchanged.

Similarly:

00 30099 Subtract contents of location 99 from GPR
00 40099 Multiply GPR by location 99
00 70009 Divide GPR by location 99

In each case, the results are placed in the GPR. Following is a
sample program demonstrating the use of the ARITHMETIC opcodes.

SAMPLE PROGRAM #3

00 99000 SAMPLE PROGRAM USING ARITHMETIC
01 50099 READ X
02 60099 PRINT X
03 50098 READ Y
04 © 60098 PRINT Y
05 10099 LOAD X INTO GPR
06 20098 ADD X +Y TO YIELD Z
o7 90097 STORE Z
08 60097 PRINT Z
09 10099 LOAD X INTO GPR
10 30098 SUBTRACT X - Y TO YIELD 2
11 80097 STORE Z
12 60097 PRINT Z
13 10099 LOAD X INTO GPR
14 40098 MULTIPLY X * Y TO YIELD Z
15 90087 STORE Z
16 60097 PRINT Z
17 10099 LOAD X INTO GPR
18 70098 DIVIDE X/Y TO YIELD Z
19 80097 STORE Z
20 60097 PRINT 2Z
21 00000 STOP
999 99999 END

In this program, use X=100 and Y=50. If you keypunch and run
it correctly, your output will look like this:

100
50
150
50
2000
2

NO-QOPeration---Opcode 99

The NO-OP opcode is used to aid the programmer. When it
is encountered in a program, it does just as its name implies,
nothing. The IAR is incremented by one and execution continues,

The instruction takes the form:
00 99000 Continue

A NO-OP is handy for a couple of reasons. Number one, an
extra comment may be inserted in the program listing by using a
NO-OP instruction. This may be useful in an exceptionally complex
program where additional comments become necessary, or to break
up logical sections of a program.

Secondly, a NO-OP can be used as a 'place holder”. While
writing a program, it is handy to sprinkle in a NO-OP or two in case
instructions need to be added later, The addition is more easily
made by replacing a NO-OP with an instruction than it is by inserting
the instruction and renumbering the entire program,

DATA INITIALIZATION

Data Initialization is the process of making 2 number, used
as a data constant, an integral part of the program. Since SIMCOMP
will accept and store in memory any number within its useable range,
we may place a number into any memory location at the time a program
is read in and have it available as a constant throughout program ex-
ecution, Data Initialization is very useful when a number (constant)
will be used several times in a program.

The code for Data Initialization looks like this:
99 00001 = CONSTANTI1

This stores the number 1 in memory location 99. The constant
will be in memory at the time the program begins, It will remain
there throughout program execution unless the program reads or
stores another number into that location, which will change the
constant.

Use care when reading or storing data in your program so that
you do not unintentionally replace your desired constant with another
number and so cause errors in your program output.

A sample program using Data Initialization follows.

SAMPLE PROGRAM #4
DATA INITIALIZATION

00 50099 READ X INTO LOCATION 99
01 60099 PRINT X
02 20090 ADD CONSTANT TO X
03 90098 STORE X +C
04 60098 PRINT X +C
05 10099 LOAD X INTO GPR
06 40090 MULTIPLY X x C
07 90097 STORE XxC
08 60097 PRINT X x C
09 61600 DUMP MEMORY
10 00000 STOP
90 00005 CONSTANT =5
999 99999 END

-10-

The BRANCH Opcodes ~~-(80, 81, 82 & 83)

The BRANCH opcodes are used to cause a change in the
sequence of program execution., Normally, the IAR is incremented
by one after each instruction is executed. The BRANCH instruction,
however, causes the IAR to point to a specified memory location.

The UNCONDITIONAL BRANCH, opcode 80, causes a branch
to take place any time the instruction is executed. The instruction
takes the form:

00 - 80036 Jump to location 36

When this instruction is encountered, it causes the IAR to be
pointed {o location 36 and execution of the program continues from
there. It is possible to jump to any location using the BRANCH, so
care must be taken in its use.

Three variations of the BRANCH opcode are opcodes 81, 82 and
83. These are BRANCH ON GPR POSITIVE, BRANCH ON GPR :
NEGATIVE, and BRANCH ON GPR ZERO respectively. The instruc-
tions take the same form as the UNCONDITIONAL BRANCH:

00 81054 GotoB54ifGPR> 0
00 82054 Goto 54 if GPR < 0
00 83054 Goto 54 if GPR = 0

When executed, a BRANCH is taken if the conditions are met.
If they are not met, execution continues squentially. The IAR is
‘incremented by 1 and execution of the program continues as normal.

Following is a sample program demonstrating the use of the
BRANCH opcodes,

~11-

SAMPLE PROGRAM #5 - BRANCHING

00 50099 READ # OF NUMBERS TO AVERAGE
0l 10099 LOAD THIS NUMBER INTO GPR

02 90090 STORE NUMBER IN MEMORY LOCATION 90
63 60099 PRINT THE NUMBER FOR A CHECK
04 82016 GO TO 16 IF NEGATIVE

05 83016 GO TO 16 IF ZERO

06 50098 READ NUMBER TO AVERAGE

07 10097 I.OAD RUNNING TOTAL

08 20098 ADD NEW NUMBER

09 90097 STORE NEW RUNNING TOTAL

10 16099 LOAD COUNT INTO GPR

i1 31001 DECRIMENT BY ONE

12 90099 STORE THE COUNT

13 60038 PRINT THE NUMBER JUST USED

14 80004 GET THE NEXT NUMBER

15 99000 CONTINUE

16 16097 LOAD RUNNING TOTAL

17 70090 DIVIDE BY NUMBER OF ENTRIES
18 90091 STORE AVERAGE

19 60091 PRINT AVERAGE

20 00000 STQOP

97 00000 SET RUNNING TOTAL TO ZERO

999 99999 END

IMMEDIATE Instructions---Opcodes (11, 12, 21, 31, 41 & T1)
Immediate operations perform the same operations as their
memory addressing counterparts. The difference is that the last

3 digits of the instruction are data rather than a memory address.

For example, LOAD IMMEDIATE opcode 11 has this form:
00 11075 Load the number 75 into the GPR

This loads the number 75 into the GPR...NOT the contents
of memory location 75,

Another example, LOAD NEGATIVE IMMEDIATE opcode 12:
00 12767 Load -767 into GPR

loads the number -767 into the GPR,

-12-

Similarly:

00 21055 Add 55 to contents of GPR

00 31007 Subtract 7 from contents of GPR
00 41654 Multiply GPR by t54

00 - 71010 Divide GPR by 10

Remember that the previous contents of the GPR are lost
following these operations.

-13-

WHAT AN ABEND DUMP
& ASSOCIATED MESSAGES
WILL TELL YOU

If a program abends (abnormally ends) for one reason or
another, a message is generated describing the reason for program
termination. The explanation of these messages will be found in
Appendix B. The abend messages also show the IAR and GPR at the
time the abend occurred. In the event an instruction itself caused
the abend, the IAR will point to the offending instruction. Many
times the contents of the GPR will assist you in determining what
‘was happening at the time of the abend.

SIMCOMP will tell you how many instructions were executed
from the user program. It may be helpful in debugging the program
to follow SIMCOMP's steps through the program to determine the
error. Inthe case of an endless loop, 1000 instructions will show
as being executed. A problem such as this may be uncovered by
using the trace of the last ten instructions executed. Many times
the pattern of the loop will be repeated, pointing to the area of
the program in which the problem occurred. The trace is a useful
debugging aid if used correctly. It will point not only the problem
instruction(s) but also show the program's path up to the problem.

The memory dump lists the contents of all memory locations
at the time of the abend. The user can then easily verify that the
program which is in memory is what was intended. Data stored
in memory may also be checked in order to determine the problem.

-14-

OPCODE

00
10

11
12

20

21

30

31

40

41

o0

60

61

70

APPENDIX A

SIMCOMP INSTRUCTION SET
NAME DESCRIPTION
STOP Stop execution
LOAD Load GPR with contents of addressed

LOAD IMMEDIATE

LOAD IMMEDIATE

. ADD

ADD IMMEDIATE

SUBTRACT

SUBTRACT IMMEDIATE

MULTIPLY

MULTIPLY IMMEDIATE

READ

PRINT

STORAGE DUMP

DIVIDE

memory
Load GPR with 3 digit immediate data

Load GPR with 3 digit negative
immediate data

Add contents of addressed memory to
GPR; store results in GPR

Add 3 digit immediate data to GPR;
store results in GPR -

Subtract contents of addressed memory
from GPR; store results in GPR

Subtract 3 digit immediate data from -
GPR; store results in GPR

Multiply GPR by contents of addressed
memory; put results in GPR

Multiply GPR by 3 digit immediate data;
store results in GPR

Read data card from input stream
(one number per card) '

Print addressed memory contents

Request a dump (listing) of all memory
locations at current time

Divide GPR by contents of addressed
memory; store results in GPR

OPCODE
71

80

81

82

83

50

99

NAME

DIVIDE IMMEDIATE

UNCONDITIONAL
BRANCH

BRANCH POSITIVE

BRANCH NEGATIVE

BRANCH ZERO

STORE GPR

NO-OP

-16-

DESCRIPTION

Divide GPR by 3 digit immediate
data; store results in GPR

Branch to location in immediate data
Branch to address giiren if contents of
GPR is positive; continue with next
instruction if not -

Branch to address giveh if contents of
GPR is negative; if not, continue with

next instruction

Branch to address given if contents of

‘GPR is zero; continue with next instruc-

tion if not

Store contents of GPR into specified
memory location

No-operation; used to aid program

- writing

APPENDIX B

SIMCOMP WARNINGS AND ERRORS

WARNINGS

No comment on source record

Character data in numerical field
... Statement ignored

ERRORS

Invalid location value on input,...
Job not executed

Invalid opcode encountered

Addressing protection error

End of file on input stream

Zero divide attempted

Execution time limit exceeded

REASONS

User neglected commenting a line in the
program, This is a gentle reminder to
comment your program.,

Characters appeared in the location or
object code fields of the user program.
The program finished being read in but
could not be executed as location ang
object code must be numeric.

REASONS

A location beyond the bounds of available
memory has been specified in the user
program. The program cannot be run.

During execution a meaningless opcode
was encountered. Since the instruction
could not be executed, the program
terminated.

User program instructed the CPU to
fetch or store data from or to a location
outside of the memory range.

This may be caused by one of two problems.
The error can occure while SIMCOMP is
reading the user program if the end card

has been omitted. It can also occur during
program execution if a READ instruction

is issured and no data appears for the READ.

Self-explanatory. . . attempt to divide by zero!

SIMCOMP will execute 1000 instructions. If
more instructions are executed, it is assumed
that the program has encountered an endless
loop. The program execution is terminated.

_']_7 -

ERRORS

Integer overflow occurred...
GPR cannot be stored

Integer underflow occurred...
GPR cannot be stored

Print limit exceeded

Character data in mumeric input
data field

-18-

REASONS

An operation has caused the value in the
GPR to exceed a SIMCOMP word storage
size (99999), thus the value cannot be
stored.

An operation caused the value in the GPR
to exceed a SIMCOMP word storage size
in a negative direction (~ 99999), so the
value cannot be stored,

SIMCOMP allows a maximum of 100 lines of
printed output, (A storage dump is counted
as 10 lines). If this limit is exceeded, an
endless PRINT loop is assumed and execu-
tion is terminated.

During execution of a READ instruction,
characters appeared on an input card.
Remember, SIMCOMP reads 1, 2 or 3
digit integers.

