SHARE PROGRAM
LIBRARY AGENCY

HHHHHHHHHHHHH

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
5555555555555

(SHARE Program Library Agency
= - Trinnale Universities Computation Center
T Box 12175
. ~search Triangle Park, N. C. 27709

COSMIC CONTROL NUMBER :

This form should be completed and submitted with the program package to the SHAR?E Program
Library Agency at the address shown above. Standards and instructions for submitting programs
are in the "SHARE Program Library Standards Manual '.

(1) Program Number (to be filled in by COSMIC). 360D-03.2.014

(2) System Type (machine) v v v v v v v v V.. . . S/360, S/370

(3) Search Key v v . v o v v v v .. - -+ _Compiler /and/executes/written/

in/the SIMSCRIPT II Programming

Language
(4) Programming Language e e e RENACAT R Asm F
(5) Author's Name and Address . . . e e e e e e Philip J. Kiviat
: CTEC, Inc.

7777 Leesburg Pike
Falls Church, va 22043

5

6) Direct Inquiries to Name and Address .,
q
(if different than Author)

(7) Title of Program, *+ ¢+ - -_The SIMSCRIPT II Programming Language

(8) Submitter's Installation Membership Code, , , A

9) Submitter's Own Program Identification and Suffix (optional),

* * e s s & 3

0)PrimarySubjectCode........... R IR ¥ S 2

1) Operating or Monitor System Required 05/360

2} New or Revision Code (if revision, show prior Program Number in Item Ly oo oo . R

3) YearCompleted..................
1) Date of Submittal.

0--..--.----.-.---.-69
R 06 07 72

5) Documentation (number of original pages submitted) . ., . ., e e a 47

) Abstract (should contain sufficient information for a reader to determine the value of the
program). Listed on the reverse side of this form are subjects which may serve as a
guide for a descriptive abstract.

DISCLAIMER

Trlangle Universities Computation Center (Tucce)
sorves solely 2s the distribution agent for contricuted
Progrems anz doss not tesi or mair s tham, They
are distributed eescnlaly in ine original form Sube-
mittad by the author. NaMher TUCC nor SHARE, INC.,
Makes any warranty, expressed or Implied, ag to the

documentation, function, or performance of the con-
tributed programs.

ST T

SHARE PROGRAM LIBRARY SUBMITTAL FORM

Subject Guide:

a., Purpose

‘b. Programming Language used

c. Version and modification level or release number
d. Field of application

e. Type of routine (main program, subroutine, etc.)
f. Specific description of machine requirements

ABSTRACT

link-editable modules. The compiler itself is written in SIMSCRIPT II. Tt

will run under MVT; MFT; or PCP.

s B's g S 2 Feifvid Lo ilEsd
The program.shguld be stoxed in the user's load library and called

BP0 B S AN

out later by the,tdulpile procedures. Compilation requires core storage of

at least 150 K bytes.

Cioeed

SIMSCRIPT II lS descrlbed completely in THE SIMSCRIPT II PROGRAMMING

LANGUAGE by P. J. K1v1at, R. Villanueva, and H. M Markowitz, Pretice-Hall,

Englewood Cliffs, New Jersey, 1969.

Please attach additional pages if necessary). Total pages attached —_

Permission to Publish

"I hereby give the SHARE Program Library Agency permission to reprint, reproduce,
and distribute this program."

(17) Signature of Submitter and Date /@&»\Aﬂ (,L) %w 6-7-12

<
(18) Signature of Installation Addressee W&) >

SIMSCRIPT‘iI System Tape Summary

This 9 track, 800 bpi, labeled tape, 003381, contains
8 files. . Each file is EBCDIC,,has a logical record length of
80, and a block size of 800. '

File 1: SYS1.SIM2LIB—-SIMSCRIPT II object-time and
run—-time library.

logical record count = 979

File 2: 5YS1,.5TM2--SIMSCRIPT II compiler and multiple
assembler interface.

logical record count = 2015

File 3: §yS81.STIM2GEN--JCL procedures to generate SIMSCRIPT
from this tape (003381} to disk.

logical record count = 19

File 4: SYS1.8iMPROC~-JCL procedures to run SIMSCRIPT I11.

logical record count = 78

File 5: SYSl.SIMSAMP~*Samp;ekSIMSCRIPT'II program.

logical record cou.t = 13

File 6: SIM2.COMPILER-~-Compiler source-code.

logical record count = 6089

File 7: SIM2.LIBRARY—-Library source code.

logical record count = 8885

File 8: §TM2.SUPPORT~~Compiler. support programs (grammar
processor, etc.) .

logical record count = 987

RM-5777-1-PR
MARCH 1972

The SIMSCRIPT I
Programming Language:
IBM 360 Implementation

P. J. Kiviat, D. W. Kosy, H. |. Shukiar,
J. B. Urman and R. Villanueva

This research is supported by the United States Air Force under Project Rand—
Contract No. F44620-67-C-0045-—Monitored by the Directorate of Operational
Requirements and Development Plans, Depuly Chief of Staff, Research and
Development, Hq USAF. Views or conclusions contained in this study should
not be interpreted as representing the official opinion or poticy of Rand or of
the United States Air Force.

SANTA MONICA, CA. 90406

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

“i1ii~

PREFACE and SUMMARY

This Memorandum contains information on the implementation of the

SIMSCRIPT II computer language on Rand's IBM 360 Model 65 computer

system.

It should be of general interest to IBM 360 users, and to per-

sons undertaking the task of implementing SIMSCRIPT II on other com-

puters.

Both the implementation and this report have been revised to

eliminate errors discovered since the report was first released (July

1969) and to bring out a few new features.

Principal changes include:

1.

List statements, automatic entity checking, lefthanded func~-
tions, monitored variables, and BEFORE and AFIER statements
now supported.

BETA.F, ERLANG.F, GAMMA.F and WEIBULL.F statistical functions
corrected and a new gamma variate generator, GAMMAJ. ¥, added
for use with small shape parameters.

The value of SEED.V(l) changed to provide a better initial
sequence of random numbers for stream 1. Note that results

of runs made using this new release will therefore differ from
runs using the previous release. (To use the original stream-l
random-number sequence, LET SEED.V(1) = 524287 before beginning
the simulation.) ‘

JCL procedures slightly modified to eliminate need for the
SIMIN dataset and to produce less output from the assembly
step.

A normal approximation for values of mean MU greater than 6
for the POISSON.F random variate generator. This is faster
for large values of MU and eliminates an error condition that
could occur in the old function. Note that results of runs
made using this new release differ from those runs using the
0ld POISSON.F function.

The addition of routine SNAP.R, to allow the user to tempor-
arily regain control from the monitor upon detection of a

fatal error at run-time.

—iv-—

Becauge of these modifications, the user must do the following to run
programs previously compiled by earlier versions of the compiler:
either (1) insert a control card to the linkage editor, preceding the
object decks of the form bENTRY MAIN or (2) recompile the MAIN routine
to obtain a new object deck.

SIMSCRIPT II is described completely in P. J, Kiviat, R. Villaneuva,
and H, M. Markowitz, The SIMSCRIPT II Programming Language, The Rand
Corporation, R-460-PR, October 1968 (also published as a commercial
book by Prentice-Hall, Englewood Cliffs, New Jersey, 1969). A companion-
plece to the present Memorandum offers a compact reference listing of
the syntax and semantics of SIMSCRIPT II, designed for professional pro-
grammers already familiar with the language. See P. J. Kiviat and R.
Villaneuva, The SIMSCRIPT II Programming Language: Reference Manual,

The Rand Corporation, RM-5776-PR, October 1968, The system itself is
available through the SHARE/COSMIC library.

— v—
CONTENTS

PREFACE and SU}MRY & 4 & 6 8 8 FH B O VSRS lllll.l'.ll.i.l..'l. iii

TABLES svsescanccsansssnsosnsnanes Crressriasans wetstasensasasns vii

Section
I. TIMPLEMENTATION CONSIDERATIONS AND RESTRICTIONS4 1
Statements Not Yet Implementedceeevccccesvonees 9
Helpful HINtsS seveecvnssctnnnannccccetnnennncnces ces 10
Compilation +evesseererscrosararecesosnaseececenns 10
ExXecution ...ccosevteenosacasserssoncnne crssrasens 1l

I1. RULES AND DECK SETUP FOR COMPILATION, ASSEMBLY,

AND EXECUTION ..civeenvscrsnnns Ctresssesaas cerann 12
Control Cards8 ..ceeeeesarssorcoscssssosssonnsacnassssns 12
Compilé-Assemble-Link Edit-Execute ..csovsce--e e 12
Compile-Assemblecceieveanrorconntarsrocrecencs 13
Link EQit-EXecuteccecssrssrscvaasssssronsccsce s 13
Not Using the Catalogued Procedurescecescvence 13
Default Conditions ..ee-ve-... tesessenseserr s oo 14
Recompilationcovvencneennen R TR 14

III. COMPILATION AND ASSEMBLY ..covevecccvccrnsnrrmcnccanes 16
IV. EXECUTION ...csvovvoncccnenses Wt isemssasiereresasenns 22

V. DEFINING ADDITIONAL DATA SETSevvvevecerconoreeces 27
General Rules ‘.-..‘l.llll.".‘.-.l..I‘I"l...l.lll' 27
Record FOYMALS «cvescassssssosossnoasnssrgcssonscests 27

Vvi. CALLING ASSEMBLER LANGUAGE ROUTINES heeeettentseraans 31
The ProlOgUeseseeenevsssrocosssasnccoscsasonnnes 31

The Body +eceeens Certeseearananas er et enaeas ceeserene 33
GIVING Arguments ceerresrasase cresaseesenattess 33
YIELDING Arguments ...cesoensasssss tsastesevnassrans 33
Recursive Local Variables ..vecevcsssvnroncacranss 34
REGISLETS .uasvesrasecncsacrsrsocncastraroneonces . 34
Readabllity sevesereecnscaacsssersnsassrontrrcccense 34
Returning Control to the Calling Programc.....- 35

The Epilogue ...ccivrsvesnanns ceettvessassatasrrren 35

VII. STORAGE ALLOCATION DURING EXECUTION seavsceccoceseeres 36
Permanent Entities .ciivseareseccccssrrsarsscssssanes 36
Temporary Entitieseevesecccccsannarecacronsoses 36
User-Defined Global Variables .c.ceevessrvccccaesnves 37
ATTAYS toesvsssnsnrosaesassrssosncastonsrssncccssess 37

VIII. RANDOM NUMBER GENERATOR AND STATISTICAL FUNCTIONS 38

IX,

vi

INSTALLING THE COMPILER 4vevenvennnenerosorsncscasacnsse
System Requirements ...veiiviseeioacscssesoscsrsocsans
Distributed System Tapeivieceersnnncnsaane cenn

Generating the Compiler
Some Notes on Procedures

LR R R R R A R A A A N I I BN B R]

L I R I R R O I R R A A N LI I IO B B NN I)

43
43
43
43
45

-vii-

TABLES
1. Job Control Cards Using Catalogued Proceduress... 12
2. Messages Produced During Compilation ...ieseeseecces crases 17-21

3. Messages Produced During Execution et sattarreennan 23-26

I. TIMPLEMENTATION CONSIDERATIONS AND RESTRICTIONS

This section details the IBM System/360 implementation of the
language defined in Rand Report R-460-PR (see Preface). Suggestions
are made for improving program efficiency in cases where such comments
are appropriate. All references are to section numbers in the defin-
ing report. Features of the language not yet implemented are also
listed.

Seetion 1-02

Because SIMSCRIPT IT ignores trailing periods (see Section 1-09),
numbers followed by a period are treated as integers (e.g., 55. is
interpreted as the integer 55). A zero must be included for the con-
stant to be considered a real (decimal) number. Notice that this con-
vention is quite different than that of FORTRAN and other languages.
Whether a constant is integer or real 1is sometimes important, e.g.,

when used as an argument to a function (see Section 2-19).

Section 1-08
The statements

ADD e TO v : and
SUBTRACT e FROM v

are translated into

LET v
LET v

x t 2:% and

before they are compiled, giving rise to three potential problems:
(1) 1If v is a subscripted variable with complex subscript ref-
erences, it is more efficient to compute the subscripts in a separate

statement than to have the compller compute them twice. For example,
ADD 1 to X(Y*(AB-2) ,DIFF**N)
translates to

LET X(Y*{AB-2),DIFF**N) = X(Y*(AB-2) ,DIFF**N) + 1

causing the subscripts Y*(AB-2) and DIFF**N to be evaluated twice,

To conserve storage space and computer time, the statement should be
written as:
LET I Y*(AB-2)

LET J = DIFF**N
ADD 1 TO X(I,J)

(2) Unforeseen difficulties can arise if a subscript is or con-
tains a function, barticularly one that has slde effects, e.g., calls

the random number generator. For example,
ADD 1 TO TABLE(UNIFORM.F(A,B,1))
is translated to

LET TABLE(UNIFORM.F(A,B,1)) = TABLE(UNIFORM.F(A,B,1}) + 1

before it is compiled, causing two random numbers to be generated,
and most probably two different elements of TABLE to be accessed.

The statement is more properly written as

LET I = UNIFORM,F(A,B,1)
ADD 1 TO TABLE (I)

(3) Duplicate error messages may be produced because of inter-

mediate translations as in (1) and (2) above.

Section 1-09

The special characters ¢ and | do not print.

Section 1-13
In the SKIP e OUTPUT LINES statement:
if e < 0, 1t is set to O
if e > LINES.V, it is set to LINES.V
Section 2-03

The code generated for the statement RESERVE v(*) AS e, and sim-
ilar statements, uses v(*) twice. The statement generates a subpro-
gram call in which v(*) is used once as a GIVING and once as a YIELD-

ING argument. For example, the statement

RESERVE ARRAY(I,*) AS 15
generates the statement
CALL RES.R{ARRAY(I,*},2,15) YIELDING ARRAY(I,*)

for the unpacked, two-dimensional array ARRAY.

If] 1s a function with side effects, the result can be incor-
rect. The same steps should be taken in each of these cases as in
1-08.

In statements of the form
RESERVE array pointer list AS e

the expression € is evaluated once for each array named in the list.
Arrays of more than one dimension also have the expressions in the

BY e clauses reevaluated.

Seetion 2-05

The upper bound expression (e2) of a FOR loop is evaluated each
time the loop is repeated. This also applies to the BY expression

(e3), if any.

Section &~09

Improper index evaluations in the statements GO TO label(e) and
GO TO label, OR label, OR ... OR label PER e do not always have the
same consequences. Assume that some or all of the labels, label(i),

i=1, ..., n have been defined.

e=0 Program terminates with a meaningful error
message.

e<n Program terminates with a meaningful error

label(E) undefined message

e > n and transfer is Program terminates a meaningful error

to a valid nonbranching message.

instruction

e > n and transfer is Program terminates with an operating sys-

to a data word tem error message.

@ > n and transfer is Program continues, most likely in error,

to a valid branching with no warning given.

instruction

Section 2-16

The maximum size of a subprogram (main routine or routine) is

12,288 bytes.
12,288 = 3 base registers @ 4,096 bytes/register

The first seven letters of each routine name must be unique, e.g.,
a program cannot contain routines named PROCESSA and PROCESSB. Exter-
nal references can only contain eight letters; SIMSCRIPT II prefixes
the letter L (left) or R (right) to the filrst seven letters of each
routine name in constructing the external references. In additionm,
all periods are converted to dollar signs. All references to routines
in object decks, asgembly listings, or memory maps are of this form,
e.g., the right-handed routine JOB.OVER.NOW is converted to RJOB$OVE .

Section 2-26

The form line of a PRINT statement cannot appear in the i lines
following a SUBSTITUTE THESE 1 LINES FOR word statement.

Seetion 3-04

The RELEASABLE declaration is not necessary when operating under
PCP or MFT I1. The statement is not available under MVT.

Section 3-06

Overlay is available through normal 0S/360 procedures. Nome of
the features in the section--LOAD, SAVE, DYNAMIC, OVERLAY, or IS
LOADED--1s implemented.

Seotion 3-07

If a statement is of the form COMPUTE v AS THE statistic OF exp.

and

atatistic is MAX or MIN and
v is INTEGER and
exp. is INTEGER

-5-

or is of the form COMPUTE v AS THE statistic OF exp. and

atatistic is MAX or MIN and
v is INTEGER and

exp. i1s INTEGER

gignificance can be lost due to double conversion between INTEGER and
REAL during evaluation. This will only happen if some value of exp.

or e is preater than 224.

Section 3-08

An ALPHA variable or constant can hold at most four characters.

ALPHA literals are left-adjusted if less than four characters.

Seation 3-09

In a WRITE statement, an ALPHA literal (character string) is
iimited in length only by what is expressible on a single card.

In the statement USE d FOR INPUT and USE d FOR QUTPUT, d is an
arithmetic expression. If it is REAL, it is rounded to INTEGER dur-
ing execution.

The "standard" d (device) numbers are:
input care reader = 5

output line printer = 3
punch = 2
JCL DD cards are needed to define additional 1/0 devices (see Sec. V).
During output, on those devices for which it is relevant, column
0 is used for carriage control, Ordinarily, SIMSCRIPT II takes care
of setting its value. It can be addressed as OUT.F(0) and thus set
or tested by the programmer. The carriage control characters and

their functions are:

Printer Punch
blank single space n select stacker N
0 double space
- triple space
1 new page
2-12 skip to channel 1

+ no space

-6=

Since OUT.F is an ALPHA function, the control characters must be
expressed as ALPHA literals, e.g., LET QUT.F(0) = "1".

SECTION 3-10

The ADVANCE and BACKSPACE statements are not implemented.

Section 3-10-2

Whenever a REWIND statement is executed and the unit designated
is the current input (output) unit, the current input (output) unit

is changed to the card reader (printer),

Examples:

Statements System Variables
(1) USE 8 FOR INPUT READ.V = 8

READ X AS D(10,2)

REWIND 8 READ.V = 5
(2) USE 8 FOR OUTPUT WRITE.V = 8

WRITE X AS D(10,2)

REWIND 8 WRITE.V = 3

The consequences of these actions are that every REWIND state-
ment must be followed by a USE statement or USING phrase before the
rewound unit can be read from or written on.

To read a tape or disk repeatedly one must write:

'READ' REWIND d

USE d FOR INPUT
READ ...

GO READ
and not

USE d¢ FOR OUTPUT
'READ' REWIND d
READ ..

G0 READ

REWIND destroys the integrity of the "current unit."

Section 3-11

The system variables RCOLUMN.V and WCOLUMN.V are set to -1 by
the system after the unit to which they refer has been USED. 1If a
programmer wants to use them before the first read or write has been

executed, he must take this into consideration.

Section 3-12

Automatic page turning and accounting for the variables LINES.V,

LINE.V and PAGE.V are donme for the standard line printer, unit number

3, only. For other devices, OUT.F{0) must be used.

Section 4-01

The first five letters of each entity name must form a unique
word. Permanent entity names are prefixed with the characters RC$
to form external names for their '"create routines"; temporary entity
names are prefixed with the characters GW$ to form external names for
the variables containing the length of their entity records.

Section 4-02

The first five letters of each set name must form a unique word.
Three characters are prefixed to these letters to form eight-letter
external references for the seven possible set routines. These three

letters are an R plus the characters listed in Table 14 of R-460-PR.

Section 4-07

Every global variable or attribute not assigned to a word or ar-
ray must have its first seven letters form a unique word. Such var-
iables are accessed by external references, and must therefore follow
their restrictions (see Sea. 2-16). When possible, word or array
specification should be used, as it generates more efficient code.

ALPHA variables can only be quarter field and intra-packed.

The default condition for bit and quarter field packing of in-
tegers is unsigned. Signed can be specified when necessary.

REAL variables cannct be packed.

-8—

Section 4-12

Implied subscripts cannot be used when reading attributes of
permanent entities. If AGE is an attribute of the permanent entity
MAN, the form FOR EACH MAN, READ AGE(MAN) must be used. READ AGE is

assumed to be a free form read of array AGE.

Section 4-17

Arguments of a subscripted monitored variable are automatically
converted to INTEGER (as for any subscripted variable) before being
passed to the monitoring routine. Note that the monitoring routine
cannot be CAlLlLed directly. If variable is monitored, the statement

CALL variable is undefined.

Section 6-01

The first five letters of every event name must form a unique
word. This is because event names represent both temporary entities
(event notices) and routines and must follow the conventions of each
(see Sec, 2-16 and Seec. 4-01).

External events cannot be assigned to unit zero in an EXTERNAL
EVENT UNITS statement.

Section 5-02
Statements of the form
SCHEDULE AN event CALLED expression; IN expression, DAYS

are compiled into the statements

CREATE AN event CALLED expression;
LET TIME.A(INT.F(expressiony)) = TIME.V + (expression;y)
CALL A.EV.S(INT.F(expression;), I.event)

Similar code is generated for SCHEDULE statements that use NOW

or AT clauses. Since expression, is evaluated three times, steps sim-

1
ilar to those discussed in Sec. 1-08 should be taken to guard against

unwanted side effects and to improve efficiency.

-9-

The SCHEDULE...NOW statement is implemented in a way that could
cause difficulties for the rare case where a programmer chooses to
manipulate event notices in the timing sets (EV.S) directly. Users who
deal with events only through the normal SIMSCRIPT II statements and
mechanisms (SCHEDULE, CANCEL, START SIMULATION) will have no difficul-
ties with the statement.

A statement of the form
SCHEDULE THIS ewent NOW

is compiled into the statements

LET TIME.A(INT.F(event)) = -RINF.C

CALL A.EV.S(INT.F(event), l.event)

Similar code is generated for other variations of the SCHEDULE state-
ment (see above).

The large negative value of TIME.A insures that the event so
scheduled will be the first of its class to be removed from its timing
set, EV.S(I.event). 1If several events of different classes are sched-
uled NOW within the same event routine, each appears at the top of its
respective timing set and the appropriate one is selected first accoxd-
ing to the implicitly or explicitly specified priority.

It is therefore possible for events scheduled to occur at posi-
tive simulation times to have negative event times stored in their
event notices. Programmers should bear this in mind if they search
or operate on timing sets themselves. ‘

When an event is selected to occur, i.e., to become the "next"
event, its TIME.A attribute is tested to see if 1t is -RINF.C. 1f
it is, it is set to the current value of TIME.V before control is
passed to the event routine. If it is not, TIME.V is set to its val-
we. In this way, when an event occurs, the TIME.A attribute of its

event notice always contains the correct current simulation time.

STATEMENTS NOT YET IMPLEMENTED

The following statements and language features are not implemented

in the current version of the compiler.

Level 3

-10-

CLOSE, ADVANCE, BACKSPACE
Column repetition for the PRINT statement
LOAD, SAVE and associated features

Level 4

LIST attributes
All TEXT features

Level &

BREAK TIES

Event arguments in SCHEDULE and EVENT

ACCUMULATE, TALLY, DUMMY, and RESET

RANDOM variables

ORIGIN.R routine and the conversion functions that depend on it

HELPFUL HINTS

The following are a number of frequently made programmer errors.

Compilation

(1)

(2)

(3

Routines not having their first seven characters form a
unique word introduce undetectable duplicate names. Extreme
care should be used in naming routines.

Permanent entity, temporary entity, event notice, or global
variable names not having their first seven characters form
a unique word introduce duplicate names. These errors are
flagged during the assembly step of the preamble and are
corrected by changing the names.

Misspelling the name of a variable or function results in
an implicitly defined local variable. Execution will pro-
ceed with this "new" wvariable initialized to zero. Such

an error will be detected only if the variable is sub-

scripted and an attempt is made to change its value.

Execution

(1)

()

(3)

(4)

(5)

(6)

-11-

Disagreements in mode between arguments in calling statements
and correspoﬁding definitions in routiﬁes may be difficult to
discover as effects are subtle, e.g., an INTEGER number used
as a REAL and taken to be a zero.

Arrays not reserved before they are used generally result

in error message 204 or 205 (see Table 3).

Subscript limits exceeded often result in error message 204
or 205, but may give no indication of error.

Incorrect entity identification number of index used to
access an attribute has the same effect as exceeding a
subscript limit and also often results in error message 206.
Incorrect JCL cards produce system completion code such as
013 or F13.

Running out of core storage space produces system completion
code BOA.

-12-

II. RULES AND DECK SETUP FOR COMPILATION, ASSEMBLY, AND EXECUTION

A SIMSCRIPT II program is compiled by putting its preamble before
all its source language subprograms, prefacing and following this card
deck with appropriate control cards, and submitting the complete deck
to the SIMSCRIPT II compiler (see Table 1).

CONTROL_CARDS

Table 1

JOB CONTROL CARDS‘USING CATALOGUED PROCEDURES

COMPILE-ASSEMBLE-LINK EDIT-EXECUTE

//jobname JOB appropriate parameters
// EXEC SIM2
//SIM.SYSIN DD *

SOURCE DECKS

/*
//LKED.SYSIN DD *

Optional
OBJECT DECKS

/*
//GO.SYSIN DD *

DATA DECKS: MAY BE NONE

/*

-13-

COMPILE-ASSEMBLE

//jobname JOB appropriate parameters
// EXEC SIM2CA
//SIM.SYSIN DD *

SOURCE DECKS

/%

LINK EDIT-EXECUTE

//jobname JOB appropriate parameters
// EXEC SIM2LG

//LKED.SYSIN DD *

OBJECT DECKS

/% ,
//GO.SYSIN DD *

DATA DECKS: MAY BE NONE
/%

Within JCL cards, blanks are meaningful. Punch all cards exactly
as shown. The //GO.SYSIN DD * card and accompanying /* card are

always needed, even 1f there is no input data.

NOT USING THE CATALOGUED PROCEDURES

Section IX shows how a SIMSCRIPT II program deck is embedded
in the JCL thaé integrates the various SIMSCRIPT processing steps.
As with the caﬁﬁlogued procedures, the program, object, and data -
decks follow the SIM.SYSIN, LKED.SYSIN, and GO.SYSIN DD * cards

regpectively.

—14=

DEFAULT CONDITIONS

The compile and execute phases have default region sizes of 150K
and 52K, respectively. When compilations require more space, the 150K
default can be overridden by putting a REGION.SIM=nK phrase on a com-
pile step EXEC card as follows:

// EXEC SIMZ,REGION.SIM=180K

// EXEC SIM2,REGION.SIM=250K

// EXEC SIMZ2CA,REGION.SIM=168K

Larger execution phase regions are specified by a REGION.GO=nK

phrase on an appropriate EXEC card:

// EXEC SIM2,REGION.SIM=170K,REGION.GO=100K

// EXEC SIMZ2,REGION,GO=150K

// EXEC SIM2LG,REGION.GO=100K

When REGION.SIM and REGION.GO phrases appear on the same EXEC
card, the REGION.SIM phrase must be listed first.

SIMSCRIPT II always produces an assembly listing and an object
deck unless otherwise specified. To inhibit these, one can either
pass the appropriate parameters to the assembler or DUMMY the assembler

output units. This card
//ASM,SYSPUNCH DD DUMMY

inserted right after the program deck, prohibits punching the object
deck while

//ASM.SYSPRINT DD DUMMY

cancels the assembly listing. To delete both, the SYSPUNCH card is
placed before the SYSPRINT card; both are inserted immediately

following the program deck.

RECOMPILATION

When the preamble is compiled, tables are constructed that define
" the program's variables and structure. These tables are used during

compilation of the subprograms. The preamble also generates a routine

=15~

named PRMB+ and routines that support the entitv-attribute-set and
event declarations.
individual subprograms can be compiled separately, for either
correction or expansion, by preceding them with the preamble. To in-
hibit the generation of a duplicate set of support routines, the word
OLD should be put before PREAMBLE. PRMB is always generated.1L
wWhile certain preamble modifications require the recompilation
of entire programs, others do not. New entities, attributes, and
sets can be added to programs without the need for complete recompila-
tion; if specific locations (words or arrays) are not specified,
external references are used to maintain compatibility. Certain pro-
gram changes require recompilation.
Subprograms must be recompiled if variables within them:
have their packing factors changed;
are equivalenced differently;
have their array or word specification changed;

are affected by addition or deletion of a TALLY or ACCUMULATE
statement;

have their monitor status changed;

are affected by addition or deletion of a BEFORE or AFTER

statement.
Subprograms must be recompiled if sets within them:

are affected by addition or deletion of a BEFORE or AFTER
statement;

have their ranking order changed;
have the properties of their set attributes changed.
Subprograms must be recompiled if events within them:

are affected by addition or deletion of a BEFORE or AFTER
statement.

+If a preamble defines more than 80 external references, a rou-
tine PRMB1 is generated. If it defines more than 160 external refer-
ences, a routine named PRMBZ is penerated. As many PRMB1 routines
are generated as are necessary.

-16—

III. COMPILATION AND ASSEMBLY

Processing of a SIMSCRIPT II program occurs in two phases. 1In
phase one, the source program is read, a listing of it annotated with
error messages (if there are any) is printed, and an assembler lan-
guage program is produced. 1In phase two, the program is assembled.

The compilation phase listing is almost self-explanatory, as it
looks exactly like the programmer's source deck {except that DOUBLE
lines are listed as one). When there are language errors, a line is
printed identifying the source statement containing the error and the
word in question as well as a code. The codes are described in Table
2. Most often, errors can be detected at the source language level,
i.e., the assembly listing is not required.

At times, the assembler output must be consulted. It looks as

follows:

Each SIMSCRIPT II source statement appears as a re-
marks card, i.e., there is an asterisk following the state-
ment number.

When a source statement is "'scripted,” i.e., decom-
posed by the compiler into simpler SIMSCRIPT II source
statements, these statements follow the remarks card and
are preceded by two or more asterisks.

The generated assembly code follow§ the remarks cards.

Two examples illustrate each case:

(1) A source statement not requiring scripting.

Compiler listing:

LET EVENT(5,1) = 0
Assembly listing:
145% LET EVENT(5,1) = O
146 L 11,=V{GEVENT)
147 L 11,0(11)

148 L 11,20(11)
149 LE 0,=E'0’
150 STE 0,4(11)

(2) A source statement requiring scripting.

~17-

Compiler listing:
READ N.ELEVATOR

Assembly listing:
1651* READ N.ELEVATOR
152%* CALL RFI.R YIELDING N.ELEVATOR
153 L 15,V{RRFI$R)
154 BALR 14,15
155 L 11,LV+52(6)
156 L 13,=V(GNSELEVA)
157 ST 11,0(13)

1f DEFINE TO MEAN or SUBSTITUTE statements have been used, the
substitutions they invoke are seen in the remarks cards, though not
in the phase one program listings.

At times, compiler-produced error messages will refer to words
that are not contained in source statements. This will happen when
a statement is scripted in such a way that words are generated and
these words are in error. For example, in compiling the statement
DESTROY DOG CALLED D, where DOG is an entity that belongs to a set
named KENNEL, the word M.KENNEL is scripted when code is compiled to
check if an entity that belongs to a set is being destroyed. If for

some reason M.KENNEL triggers an error, the error can only be found

by checking the message against the assembly listing.

Table 2

MESSAGES PRODUCED DURING COMPILATION

Number Explanation
1 Word does not conform to statement syntax, or statement is

not allowed in this part of the program.
2 Missing) in arithmetic expression or subscript inserted.
Missing terminal " or | in literal; literal deleted.

More formats than variables or expressions; WRITE (ignored),
PRINT (zerces inserted). '

5 More variables or expressions than formats; excess ignored.

6 Conflicting or redundant properties in DEFINE statement;
statement ignored.

7 Number of subscripts inconsistent with definition or first
use; definition or first use employed.

Number

10

11

12
13
14

15
16

17

18
19
20
21
22
23
24
25

26

27

28

29

30

31
32

-18-

Table 2--continued

Explanation

ELSE without a matching IF ignored.
IF without a matching ELSE; error branch constructed.

Previous definition or use of this name precludes its use
in this context.

Attempt to assign a value to this in-line function; value
assigned to dummy location.

Array number of attribute greater than 724.
This should be the name of a routine; statement ignored.

This form of RETURN statement not allowed in event or left-
handed routine; expression ignored.

LOOP without a matching DO ignored.

Common attribute without a subscript. Implied subscripting
not allowed; unaccessible local variable created.

Number of GIVING arguments inconsistent with definition;
definition employed.

Multiple use of label name ignored.

This label should be subscripted; subscript of 1 assumed.
Name repeated in parameter list of ROUTINE or EVENT statement.
Undefined label; error branch constructed.

DO without a matching LOOP; error branch constructed.

RETURN used in MAIN routine; STOP substituted.

Missing END statement supplied.

Missing text in DEFINE TQO MEAN or SUBSTITUTE; statement ig-
nored.

Inappropriate mode and/or dimensionality for this implied
subscript due te local definition.

Attempt to place an attribute in the first five words of an
event notice; specification ignored.

Unsubscripted SUBPROGRAM variable expected here; in CALL
statement ignored, in indirect function value of zero used.

Too many internal labels generated in this routine; reduce
size of routine or number of labels.

Temporary entity more than 1023 words long; delete attributes
or specify packing.

Subscripts not allowed with this variable; subscripts ignored.

The subscript of this temporary attribute should be INTEGER;
conversion made. Attribute may be implicit.

Number

33

34
35
36
37

38

39

40
41
42
43
44
45

46
47

48

49

50

51

52

53

54

55

~19-

Table 2--continued

Explanation

Negative number {(with this magnitude) used as a subscript or
entity reference; absolute value used.

Unsubscripted label expected; subscript ignored.
THEN IF without a preceding IF; word THEN ignored.
Missing) in a logical expression inserted.

DIV.F used with non-INTEGER argument; ordinary division
assumed.

Number of YIELDING arguments inconsistent with definition;
definition employed.

Non-function used as an attribute of a "mixed" compound
entity; function assumed.

Attempt to equivalence function attributes.

Missing) in equivalence group inserted.

Attempt to pack a function ignored.

Attempt to pack an unsubscripted system attribute ignored.
Illegal packing requested for this name; packing ignored.

Packing of form (*/n) used with temporary attribute; (1/mn)
assumed.

BELONGS clause with compound entity ignored.

Attempt to define non-local variables as having local
property, €.g-, SAVED ,RECURSIVE, ignored.

Incorrect mode specification for packed variable; mode set
to INTEGER, packing kept.

Attempt to define a set not previously mentioned in an EVERY
statement ignored.

This statement should be preceded by a FOR, WHILE or UNTIL
phrase. o

Output format used in READ; format ignored.

I1legal or out—of-place * used as a subscript or argument
with this name; for subscript all asterisks assumed to fol-
low, for argument function assumed zero.

This has not been defined as a set; statement ignored.

Set lacks attribute(s) needed for this statement; statement
ignored.

This should be the name of a permanent entity; statement
ignored.

Number

56
57
58
59
60
61
62
63
64
65
66
67
68
69

70

71

72

73

74

75
76
77
78

79

80
81

-20-

Table Z--continued

Explanation

Assume a D0 before this statement (after ALSO group).
This should be a temporary entity; statement ignored.
GROUP used without column repetition.

This should be the name of an event; statement ignored.
Suppression in midst of column repetition group {(suppressed).
FOR phrase expected after PRINTING; PRINTING ignored.

IN GROUPS OF phrase expected; column repetition ignored.
IN GROUPS OF 0 used; assume 1.

Unfinished heading; END statement added.

Unfinished report; END statement added.

PRINT O LINES specified; statement ignored.

Not enough print lines provided; excess ignored.

Owner or member missing for this set.

This automatically defined attribute of a common set should
have been mentioned in an EVERY statement.

Mode of this variable or function conflicts with its auto-
matic definition.

Number of subscripts or GIVING arguments of this name con-
flicts with its automatic definition.

Explicit definition of this name conflicts with its auto-
matic definition.

This ranking attribute should have been mentioned in an
EVERY or THE SYSTEM statement.

This type of FILE statement illegal with a ranked set; state-
ment ignored.

Number of GIVING arguments greater than 254; reduced to 254.
Number of YIELDING arguments greater than 254; reduced to 254.
Number of subscripts greater than 254; reduced to 254.

Subscript of label should be between 1 and 3000; this label
ignored.

Too many recursive local variables in this routine; reduce
size of routine.

Subscripted variable expected here; ignore this variable.

YIELDING arguments not allowed with left-handed or monitor-
ing routines; YIELDING iist ignored.

-21-

Table 2--continued

Number ' Explanation
82 ENTER statement allowed only in left-handed routine; ignored.
83 Monitoring not allowed in local DEFINE statement; monitor-
ing ignored.
84 Monitoring routine has incorrect number of GIVING arguments.
85 This MOVE statement not allowed in this routine; ignored.

86 BEFORE CREATING or AFTER DESTROYING not allowed; ignored.

—22-

IV. EXECUTION

The TRACE statement generates a backtrack of all subprograms
currently called, including those called by the system. Its output
looks like:

AT LOCATION 00002E40
CALLED FROM 0000D314
CALLED FROM 00000082

To determine the source language statements that correspond to
these locations, which are relative to the program load point,
(a) Using the link edit memory map, locate the routines con-
taining the locations;

(b) Subtract (in hexadecimal) the first location of each
routine from its corresponding TRACE location to get
the relative address of the location within the routine;

(c) Using the assembly listings, find the source statements
that correspond to the relative addresses within the
routines.

When the SIMSCRIPT II system detects a program error during exe-
cution it calls TRACE, prints an appropriate message, calls SNAP.R,
and terminates the program. The messages produced by the system dur-
ing execution are listed in Table 3.

TRACE also prints the current values of the following system

variables:
TIME.V the current simulation time
READ.V the number of the current input unit
WRITE.V the number of the current output unit

RCOLUMN.V the rightmost column of the last data field read
WCOLUMN.V the rightmost column of the last data field written
EQF.V the current value of the end-of-file control variable
EVENT.V the class number of the next event to be executed

The library contains a default SNAP.R routine of the form
| ROUTINE SNAP.R RETURN END.

It can be replaced at any time by a user-written SNAP.R routine.

This can be used, for example, to display values of global variables,
arrays, attributes, etc., when an execution error is discovered.

This routine should not be used to restart the simulation since recov-

ery from error conditions is not possible from SNAP.R.

Number

~N oy W

=]

10
11
12
13
14
i6
17
18
20
21
22
24
28
32
36
40
41
42
44
45

~23-

Table 3

MESSAGES PRODUCED DURING EXECUTION

Explanation

Zero to a negative power.

7ero used as second argument of MOD.F.

Negative number raised to a real power.

Invalid I/0 unit.

Negative expression in SKIP INPUT statement.

Attempt to file an entity in a set it is already in.

Attempt to file BEFORE or AFTER an entity that is not
mentioned set.

Input regquested from output device.

Attempt to REMOVE from an empty set.

Attempt to REMOVE an entity that is not in set.
Invalid stream number for random draw,

Qutput requested on an input device.

Attempt to cause an event already scheduled,

Attempt to cancel an event not scheduled.

in the

No memory space available; increase region size if possible.

Negative argument in ITOA.F.

Argument > 9999 in ITOA.F.

Input from an unopened device. .

Attempt to use a unit for imput that is in the output
Attempt to use a unit for output that is in the input
Qutput to an unopened device.

Formatted READ goes beyond the end of input record.
Negative field width in input format.

Negative field width in output format.

Mixed binary/EBCDIC record.

Invalid character while reading "C" format.

Too many characters to read and store in "C" format.
Output format field width greater than record size.

Attempt to WRITE or PRINT an ALPHA string longer than
record.

state.

state.

output

Number

46

48
52
56
60

64
68
72
76
80
84
88
92

96
100

104
108
112
116
122
124
128
131
132
133
134
135
136
137

-24=

Table 3--continued

Explanation
Attempt to transfer to missing LOOP statement--see compiler
message.
Input format field width greater than record size.
"S" format width exceeds buffer size.
Negative field width in "S" format.

Zero or negative subscript specification in RESERVE state-
ment.

Reference to an unreserved array in DIM.F.

End of file encountered during read operation while EOF.V = 0.
"B" format width £ 0 on input.

"B" format width = 0 on output.

Real number too large to be converted to integer.

Invalid character in "I" format during input.

Integer number too large for input.

START NEW PAGE statement inconsistent with output unit
definition.

Unsuccessful open--missing DD card likely.

Attempt to transfer to undefined unsubscripted label--see
compiler message.

Wild transfer in computed or subscripted GO statement.
Transfer to missing ELSE statement--see compiler message.
Parameter 2 negative in "D" or "E" format.

Parameter 2 > Parameter 1 in "D" or "E" output format.
Parameter 2 > Parameter 1 in "D" or "E" input format.
Real number too large for input.

Invalid character in "D" or "E" format during input.
QUT.F(0) cannot be used with non-carriage contrel unit.
Mean in EXPONENTIAL.F call £ 0.

Mean in ERLANG.F call £ O.
Number of stages in ERLANG.F
Mean in LOG.NORMAL.F call = 0.

Standard deviation in LOG.NORMAL.F call = O.
Standard deviation in NORMAL.F call Z O.

IA
o

Number

138
139
140
141
142
143
144
145
146
147
148
150

151
152

153
154
155
156
157
160
161
162
201
202
203

204
205
206

207
208

-25~

Table 3--continued

Exglanation

Mean in POISSON.F call = 0.

Second parameter less than first in RANDI.F call,
Second parameter less than first in UNIFORM.F call.
Number of trials in BINOMIAL.F call £ 0.
Probability in BINOMIAL.F call 2 0.

Shape parameter < 0 in WEIBULL.F call.

Scale parameter = 0 in WEIBULL.F call.

Mean in GAMMAJ.F < O.

Shape parameter in GAMMAJ.F < 0.

First parameter in BETA.F call 2 0.

Second parameter in BETA.F call 2 0.

Absolute value of SIN.F,COS.F argument 31.218-
Value of EXP.F argument > 174.673.

Value of LOG.E.F,L0G,10.F argument < 0.

Value of ARCSIN.F,ARCCOS.F argument > 1.

Value of ARCTAN.F arguments = (0,0).

Value of SQRT.F argument < O.

Absolute value of TAN.F arguments 218,
Value of TAN.F argument too close to a singularity.
Negative time expression in call of WEEKDAY.F.

Negative time expression in call of HOUR.F.

Negative time expression in call of MINUTE.F.

Attempt to execute unassigned or unavailable instruction.
Attempt to execute a privileged instruction.

Attempt to have an EXECUTE instruction execute another
EXECUTE instruction.

Attempt to access protected memory area.
Invalid address specified.

Many errors possible. See message for completion code 0Ccé
in IBM manual.

Data stored incorrectly for operation.

Fixed-point-overflow encountered.

-26-

Table 3--continued

Number Explanation
209 Fixed-point-divide yields excessive quotient; may be division
by zero.
210 Decimal-overflow encountered.
211 Decimal-divide yields excessive quotient.
212 Floating-point exponent overflow encountered.
213 Floating-peint exponent underflow encountered.
214 Floating-point addition or subtraction yields all-zero frac-
tion.
215 Floating-point division by zero attempted.
216 Attempt to release a routine.
217 Negative argument to OUT.F,
218 Argument to QUT.F exceeds buffer length.
219 No more storage available for recursion.
220 Simulation time decrease attempted.
221 Name in naﬁe field of external event data card (record) is
not an external event name.
222 Non-ALPHA word encountered in name field of external event
data card {(record).
223 ALPHA field encountered in time field of external event data
card (record).
224 Calendar-time format not yet implemented.
225 LIST statement attempted while a previous LIST is in progress.
226 Attempt to destroy an entity that is in a set.
——

Additional local variable storage can be obtained by writing a
small assembly program of the following form and linkediting it to
override the normal system routine.

XLV CSECT
DC A(LAST)
DS 1536F
LAST EQU *-
END

A number greater than 1536 in the "DS" card allocates additional full
words to the local variable storage area.

-27-

V. DEFINING ADDITIONAL DATA BETS

GENERAL RULES

To make use of additional data sets (tape or disk) during execu-
tion, additional data definition (DD) cards must be included with the
deck. These follow standard 0S Job Control Language and are subject

to the following rules:

1. The card must begin in column one as follows:

//G0.SIMUXX

where XX is the unit number referenced in the program. For

example,
//G0.SIMUOS

will refer to unit number 8.

2. Unit numbers must be from 01 to 15 and should exclude 02, 03,
and 05: these are reserved for the punch, printer, and card
reader, respectively.

3. For all data sets, DCB parameters must be included; there

are no defaults. The three essential parameters are RECFM,

BLKSIZE, and LRECL.

RECORD FORMATS

SIMSCRIPT II supports either fixed-length or variable-length rec-
0rds.+ When using fixed-length records, each time a record is written
or read, the same number of bytes (characters) are transferred, re-
gardless of how full the record is. With variable records, only the
amount of data in the buffer is actually transferred to the input/
output unit. With fixed-length records, the unused portion of the

buffer is padded with blanks. Thus, where a great variety in record

+Units 1-5 are reserved for fixed length records only.

—28-

lengths is required, variable-length formats should be used; if all
records are the same or about the same length, or if binary records
are used, fixed-length format should be used. Variable-~format records

require somewhat more time during execution but can save storage space.

To specify that a unit is to be fixed-length, use the following

rules concerning the DCB parameter:

1. RECFM=FB

2. LRECL = the number of bytes in the largest record to be
written.

3. BLKSIZE = a number of bytes equal to some multiple of the
LRECL parameter; the larger the multiple, the more core used

up, but the faster I/O operations will be handled.

NOTE: When writing as BINARY, fixed block records should be used,
and the BLKSIZE and LRECL parameters should be some multiple
of four, e.g., 100.

To use variable-length record format, follow the following rules:

1. RECFM=VB.

LRECL = the number of bytes in the largest record plus four.
3. BLKSIZE = a number of bytes equal to some multiple of the
LRECL parameter plus four.

Some examples:
1. Scratch disk data sets

//60.SIMUO9 DD UNIT=DISK,SPACE=(400,(1000)),

// DCB=(RECFM=FB,BLKSIZE=400,LRECL=400)

This data set has fixed-lemgth 400 byte records; the blocking
factor is one, and enough space is provided to hold 1000 blocks; the

data set could be used for a binary file.

//G0.SIMUO9 DD UNIT=DISK,SPACE=(400,(1000}),

I/ DCB=(RECFM=FB,BLKSIZE=4000,LRECL=400)

This is similar to the first example, except each block will con-
tain ten records; enough space is provided for 1,000 blocks or 10,000

records.

-2

//G0.SIMU12 DD UNIT=DISK,SPACE=(408,(100)}),

// DCB=(RECFM=VB,BLKSIZE=412,LRECL=204)

Here, variable blocked records are used; note that the largest
record possible is 200 bytes since LRECL is four larger than the data
portion of a record; there are two records per block ((2*LRECL) + 4);
there is enough space to hold 100 blocks or 200 records.

2. Permanent disk data sets:

//G0.SIMUO6 DD UNIT=DISK,SPACE=(400,(1000)),

// DCB=(RECFM=FB,BLKSIZE=400,LRECL=400) ,DISP={NEW,CATLG),

// DSNAME=MYDATA

This example is identical to the first one except the data set
will be cataloged (the DISP parameter) and its name will be MYDATA
(the DSNAME parameter).

//GO.SIMUO7 DD UNIT=DISK,SPACE=(244,(1000)),

// DCB=(RECFM=VB,BLKSIZE=244,LRECL=24),DISP=(NEN,CATLG),

// DSNAME=TEST ,VOLUME=SER=222222

The data set 1s variable blocked format, each record will be no
larger than 20 data bytes (LRECL = data bytes + 4), and each block
will contain ten records; there is space for up to 1000 blocks, the
data set will be cataloged, its name is TEST, and it will reside on
the volume with serial number 222222,

//G0.SIMUIC DD DSNAME=TEST,DISP=0LD

With this DD card the cataloged data set named TEST is to be ref-
erenced; since it is cataloged, the DCB, VOLUME, and UNIT parameters
will be provided by the system; thus, the data set created in the pre-
vious example could be referenced in another job by the above DD card.

3. Tape data sets:

//G0.SIMU15 DD UNIT=TAPE7,LABEL=(1,NL),VOLUME=SER=SCRTCH,

// DCB=(RECFM=FB,LRECL=100,BLKSIZE=3000,DEN=2 ,TRTCH=C)

In this example an unlabeled tape named SCRTCH is to be used for
a temporary data set; the records are each 100 bytes long and there
are 30 records per block; note that there is no SPACE parameter, but

the LABEL parameter has been added (NL indicates an unlabeled tape);

-30-

also note the additional DCB parameters of DEN and TRTCH; these are
used to indicate tape density and recording mode, respectively; this
example shows parameters for an 800 bpi, seven-track tape with the
translate feature off and the data conversion feature on. The TRTCH

parameter is only applicable to seven—-track tapes.

//G0.SIMU12 DD UNIT=TAPE9,LABEL=(1,NL)},VOLUME=SER=SCRTCH,

// DCB=(RECFM=VB,BLKSIZE=112,LRECL=54 ,DEN=3)

Here, the data set is variable blocked, the density is 1600 bpi,
the tape is unlabeled, and it is nine-track; note that there is no

TRTCH parameter.

//GO.SIMUOS DD UNIT=TAPES,LABEL=(,SL),VOLUME=001234,

// DCB=(RECFM=FB,LRECL=100,BLKSIZE=100,DEN=3),DI1SP=(NEW,KEEP),

// DSNAME=TAPEDATA

This is an example of a nine-track, 1600 bpi, standard labeled
tape with volume serial number 001234; the data set name is TAPEDATA
and it will be kept.

//G0.SIMUC4 DD UNIT=TAPES,LABEL=(,SL),VOLUME=SER=001234,

// DSNAME=TAPEDATA,DISP=0LD

This DD card could be used to read the data set created in the
above example; note that there is no DCB parameter since the DCB in-
formation is kept in the tape label. If the tape were unlabeled, the
DCB parameters would have to be provided.

4. Other data sets:

//GO.SIMUO7 DD DUMMY,DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)
//G0.SIMUOB DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)

Dummy and Sysout data sets always require DCB parameters. For

card inputs; however,
//G0.SIMUO4 DD *

the system supplies DCB infecrmation--although a block size can be -

cptionally assigned as in

//G0.SIMUO4 DD *,DCB=BLKSIZE=800.

-31-

VI. CALLING ASSEMBLER LANGUAGE ROUTINES

This section describes the conventions used in all SIMSCRIPT II
routines; it discusses how an assembler language program must be writ-
ten to interface with a SIMSCRIPT II calling routine. The discussion
is divided into four parts: routine prologue, routine body program-
ming conventions, returning control to the calling program, routine

epilogue.

THE PROLOGUE

The general form of a prolcogue is shown in Fig. 1. Shown first
is the routine name, which is the name used in the CALL statement or
function reference, after the following conversions have been applied

to it:

(a) The name is truncated to seven characters
(b) An R is prefixed to the truncated name+

(c) All decimal points are converted to dollar signs.

For example:

RANDOM.F becomes RRANDOM$
SIN.F becomes RSINSF

The variables L and X are computed by the formulae:

L
X

52 + 4*(g +y + P)
A*(y + »)

1)

where g and y are the number of gifving and ytelding arguments in the
routine's calling sequence, and » is the number of recursive local

variablesTT used by the routine.

+ .
'An L is prefixed if the routine is used as a left-handed func-
tion.

+Assuming that each recursive local variable is four bytes long.

-32-

1 Rname CSECT
2 USING *,15
3 USING H,7,8,9
4 B F
5 DC AL2(L
6 DC AL2(0
7 DC AL2(X
8 DC AL2(T-*+10)
9 F L 2,0(1)
10 DROP 15
11 BALR 0,2
12 H EQU *

Fig. l--Prologue format

The BALR instruction (line 11) passes control to XREC, a SIM-
SCRIPT II system routine that establishes a eqve area, and returns
the address of the save area's first byte in general register 6. The

save area, illustrated in Fig. 2, is divided into four sections.

System
Data

(52 bytes)

GIVING
Arguments
(4*g bytes)
YIELDING bytes

Arguments

(4*y bytes)

Recursive Local bytes
Variables

(4*r bytes)

Fig. 2--Save area format

The first section, labeled System Data, contains the following (in
order): the values of general registers 6 through 14, and floating
point registers 0, 2, and 4, saved by XREC at the time of entry to this
routine. It should not be used by the programmer. The second section,

jabeled GIVING Arguments, contains the values of the routine's giving

~33-

arguments. The third section, labeled YIELDING Arguments, is the area
in which yielding argument values are stored prior to return to the
calling routine. The fourth section, labeled Recursive Local Variables,
is the area in which all recursive local variables of the routine are
located. When a routine is called, XREC zerces out the yielding and

recursive areas.

THE BODY
The routine body must conform to several conventions concerning:

(a) accessing GIVING argument values
(b) returning YIELDING argument values
(c) accessing recursive local variables

(d) wusing registers.

GIVING Arguments

General register 6 points to the first byte of the save area.
To access the value of the first GIVING argument, the programmer must
refer to the first four-byte word after the System Data section of the
save area, i.e., the word whose address is 52 bytes greater than the
contents of general register 6. The first GIVING argument is at 52(6),
the second at 56(6), etc. The i-th giving argument is addressed as
[52 + 4%(1 - 1)]1(6).

As an example consider the calling sequence:
CALL GET.DATA GIVEN 1,J AND K YIELDING M AND N

The value of [is stored at 52(6), the value of J at 56(6), and the
value of K at 60(6),

YIELDING Arguments

The first YIELDING argument follows the last GIVING argument; in
general, the address of the i-th YIELDING argument value is
[52 + 4%g + 4*(4 - 1)](6). 1In the above example, the value that will
be stored in M when control returns to the calling routine is at 64(6).
The value that will be stored in N is at 68(6).

-3

Recursive Local Variables

The remainder of the save area is used to store recursive local
variable values. The programmer is free to organize this section in
whatever manner he chooses. The only restriction is that the area

must be an integral number of four bytes.

Registers

General registers 1, 6, 7, 8, and 9 are reserved for SIMSCRIPT IIL
use and should not be used by the programmer for purposes other than
those described. Register 1 points to the "master array" (called XMAS)
that contains the SIMSCRIPT system variables READ.V, TIME.V, LINES.V,
etc., and the global variables defined by the user to be "IN ARRAY <",
Register 6 points to the current save area. Registers 7, 8, and 9 are
used as base registers; 8 is needed only if a routine is more than 4,096
bytes long; 9 is needed only if a routine is longer than 8,192 bytes.

If 1 and 6 are used, their contents should be saved immediately after
the prologue and restored before returning to the calling routine.

If the programmer-written routine is to be used as a right-handed
function, the function value must be returned in floating-point register
6 if the function is real or in general register 5 if it is otherwise.
If the programmer-written routine is to be used as a left-handed func~
tion, the "ENTER WITH" value is found in floating-point register 6 or

general register 5 depending on the mode of tﬁe function.

Readability

A simple technique can be used to improve a routine's readability.
By putting EQU statements after the prologue's CSECT statement, the pro-
grammer can refer to arguments by their mnemonic representation rather
than by their byte displacement. For example, in a routine written for
the calling statement above, one could write:

1 EQU 52

J EQU 56

K EQU 60

M EQU 64
N EQU 68

and then use M(6) rather than 64(6).

-35-

RETURNING CONTROL TO THE CALLING PROGRAM

To return control to the calling routine, two return sequence

statements must be executed:

L 15,4(1)
BR 15

These statements pass control to XRET, which returns the save

area to the free storage pool and returns to the calling routine.

THE EPILOGUE

LTORG
TEQU *
END
T is the address of the last byte in the routine; it insures that the
entire routine is releasable. (Note that T is referenced in the pro-
. logue.)

Library routines can be created most simply by insuring that they
use only local variables or defined system variables. When several
library routines have to communicate with one another, this can be
done by compiling them with their own preamble, making sure that all
global names are unique,f and putting the object decks of this '"li-
brary preamble" and its library routines together. As this preamble
has the same name {PRMB) as that of the preamble of the program it
will be loaded with, the name of the library preamble must be changed.
This is done by changing the assembly cards of the compiled "library
preamble" in the following way:

The first assembly card is: PRMB CSECT
It must be changed to: nane CSECT

where name is unique. To be safe, name should not start with G, I,
R, or L.

TWe suggest that a person constructing library routines use glo-
bal variable names that the SIMSCRIPT II programmer is urged to avoid,
e.g., names that start with a letter followed by a period, or that end
with a period followed by a letter, or that do not appear in Secs. IV-
VII of P, J. Kiviat and R. Villanueva, The SIMSCRIPT II Programming
Language: FReference Manual, The RAND Corporation, RM-5776-PR, October
1968,

-36-

VII. STORAGE ALLOCATION DURING EXECUTION

PERMANENT ENTITIES

Permanent entities have their attributes stored as arrays. At-
tributes that are interpacked are reserved and released with the same

statement.

TEMPORARY ENTITIES

When temporary entities of a particular record size are initially
created, a GETMAIN is executed to get the correct number of bytes
from the operating system. If an odd number of words is requested,
twice the number asked for is delivered and two odd-size records split
from them.

When temporary entities are destroyed they are put in sets that
contain records of the same size. As long as records of a particular
gsize are available they are taken from these sets rather than from
the system. Records of two words or more are "branded" when they are
destroyed with the hexadecimal characters EFOFEFEF in the second word.
Before an entity record is destroyed it is checked to see if it al-
ready has a brand; if it has, it is not put in the set of available
records of its size. This assures that in spite of a programming er-
ror that destroys the same entity twice, the '"available record"” set
integrity is maintained. ’

If at some time during the execution of a program a CREATE or
RESERVE statement is executed, and for any reason there is no core
available, all even-gize records (words, not bytes) are returned to
the system by FREEMAIN commands. This space is then used for the al-
location. Odd-size records are not returned. Since this makes it
possible for a program to run out of core while there are free odd-
size records available, programmers with extremely large probleﬁs‘may
choose to define all entity records to have an even number of words.
One word may be wasted with each CREATE, but there will be no resid-

ual odd-size record problem.

-37-

USER-DEFINED GLOBAL VARTIABLES

Global variables declared by-statements of the form,
THE SYSTEM HAS A wariable IN ARRAY i

are displaced 1196 + 4*i bytes from general register 1. Variables
not placed in a particular word can be found by looking at the assem-
bly listing of the preamble, i.e., the PRMB listing. For a variable
called X the code
ENTRY GX

GX DC F'o!
is generated. The relative location of GX within PRMB is used along
with the link-edit map to find the absolute core location of X during

execution.

ARRAYS

All arrays are stored as vectors; multidimensional arrays are

constructed of linked vectors. Each array vector is of the form:

word 1 | DIM.F information|Control information | = X(*) ggigzer
X(1)
x(2)
word N + 1 X(N)

The first half of the first word contains the size of the vector
as defined in a RESERVE statement. The second half contains two items
of control information: (1) the sign bit is negative (~) if the vector
contains pointers and is positive (+) if the vector contains data; (2)
the magnitude indicates the number of actual computer words contained
in the vector, excluding the control word, Computer words are allocated
to array vectors in 8-byte multiples. Arrays are reserved and released

by executing GETMAIN and FREEMAIN instructions, respectively,

~38~

VIII. RANDOM NUMBER GENERATOR AND STATISTICAL FUNCTIONS

The pseudorandom number generator is described in an article in
the Communications of the Association for Computing Machinery, February
1969. The starting values used for SEED.V(i), 1 =1, 2, ..., 10 are:

SEED.V(1) = 2116429302
SEED.V(2) = 683743814
SEED.V(3) = 964393174
SEED.V(4) = 1217426631
SEED.V(5) = 618433579
SEED.V(6) = 1157240309
SEED.V(7) = 15726055
SEED.V(8) = 48108509
SEED.V(9) = 1797920909
SEED.V(10) = 477424540

Each sequence generates 100,000 numbers, Starting with an initial
seed of 524287, a sequence of random numbers is generated. The 100,001
number from this sequence is the initial value of SEED.V(2), the 100,001
number generated from the second sequence is the initial value of SEED.V(3),
etc. SEED.V{(1) is the 100,001 number in the sequence beginning with
SEED.V(10).

To replace the system random number generator one need only write
his own routine named RANDOM.F, i.e., RRANDOM$ (see Sec. VI).

The routines that generate samples from different statistical dis-
tributions are best described by their respective SIMSCRIPT II programs.*
To replace them with other algorithms or to a@d required error checks,

one need only write his own routines with the same names.

SIMSCRIPT II Library Name External Name in Program
BETA.F RBETASF
BINOMIAL.F RBINOMIA
ERLANG.F RERLANGS$
EXPONENTIAL.F REXPONEN
GAMMA . F RGAMMASF
GAMMAYJ . F RGAMMAJS$
LOG.NORMAL.F RLOG$ENOR
NORMAL . F RNORMAL $
POISSCGN.F RPOISSON
RANDI.F RRANDISF
RANDOM. F RRANDOMS
UNIFORM.F RUNIFORM
WEIBULL.F RWEIBULL

Further discussion of the algorithms can be found in Chapter 4 of
Naylor, T. H., Balintfy, J. L., Burdick, D. S., and Chu, K., Computer
Simulation Techniques, John Wiley and Sons, New York, 1968.

-39-

When replacing a system function, such as GAMMA,.F,SIN.F or SQRT.F,
the routine name must not be declared in the preamble as a functiom.
The routine is automatically declared by the system and an additional
DEFINE statement is taken as an error.

The name ERR.F that appears in all the statistical functions is
a left-handed system function that terminates a program after print-
ing the error code given it by the right-hand side expression, e.g.,
LET ERR.F = 46 terminates after printing error code 46.

ROUTING RFETAFIK]1, K2, STREAM)

ROUTINE BFTALF (KL, KZ2e STRFAM)

DEFINE K1 AND K2 AS REAL VARTABLES

DEFINE X 45 A REAL VARTABLE

NDEFINE STREAM AS AN INTFGER VARTARLF

IF K1<=0, L+T FRR.F=147 ELSF

IF K2<4=0, LET FRR,F=14R FL&F

LET X=GAMMA ,F(Kl, K1, STREAM)

RETURN WITH X / (X + GAMMA.F (K2, K2, STREAM})
END

ROUTINE RINOMIAL.F(N,P,STREAM)

DEFINE MNyIl,S5UM AND STRFAM AS INTEGER VARIABLES

DFFINE P AS A REAL VARIABLE

IF N<=0, LFT FRR_,F=141 FELSEFE

1F P<=0, LET EFRR.F=147 FLSF

re IF M IS A LARGE INTEGFR DR INCORRFECTLY INITIALIZED TO A REAL VALUF
t COMPUTATIUN TIME FOR THIS FUNCTION MAY BE EXCESSIVE

FOR I=1 TO N, WHEN RANDOM,F{STRFAM)I<=P, ADD 1 T SUM

RETURN WITH Stim

END

RAUTINE ERLANG.F{MU, K, STREAM)

DEFINE MU AND £ AS RFAL VARIABLES

DEFINE I, K AND STREAM AS INTFGER VARTARLES

IF MU<=0, LET ERR.F=133 FLSF

1F K<=0, LET FRR.F=134 ELSE

LET £=1

1 IF K IS A LARGE INTEGER DR INCORRFECTLY INITIALIZED TO A RFAL VALUF
v COMPUTATIUN TIME FUOR THIS FUNMCTION MAY BE EXCESSIVE
FOR 1=1 Tih K, LET F=F%RANDOM,F(STRFAM)

RETURN WITH -LDG.FLF(F) * M} / K

END

—— ~40-

ROUTINE EXPONENTIAL.F(MU, STREAM)

DEFINE MU AS A RFAL VARIABLE

DEFINE STREAM AS AN INTEGER VARTABLE

IF MU<=0, LET ERR,F=132 ELSE

RETURN WITH —MU*LDG.E.F(RANDDM.F(STREAM))

END

ROUTINE GAMMA F(MEAN, K, STREAM)
*'NOTE: FOR NON-INTEGRAL VALUED K<S, THIS ALGORITHM APPROXIMATES

'+ THE GAMMA DISTRIBUTION RELATIVELY POORLY COMPARED TO JOHNK'S METHOD
1Y (GAMMAJL.F).

DEFINE T,MEAN,K.KK AND E AS REAL VARIABLES

DEFINE STREAM AS AN INTEGER VARIABLE

IF K<1 RETURN WITH GAMMAJ.F{MEAN,K,STREAM) ELSE

1F MEAN<=0, LET ERR.F=145 FLSE

IF K<=0, LET ERR.F=146 ELSE

LET E=1

LET KK=TRUNC.F{K) :

IF RANDOM.F(STREAM) > K-KK, LET K=KK GO TO A ELSE LET K=KK+l
"A' FOR I=1 TO K, LET E=E*RANDOM.F{STREAM)

RETURN WITH (MEAN/K)*(-LOG.E.F(E))

END

ROUTINE GAMMAJ.F(MEAN,K,STREAM)

' ICALCULATION OF GAMMA DISTRIBUTED VARIATES BY JOHNK'S METHOD.
VITHIS ALGORITHM MUST BE USED FOR O0<K<1 INSTEAD OF GAMMA,F, AND SHOULD
"18E USED FOR NON-INTEGRAL VALUES OF k<5, ALTHOUGH IT IS 2.5 TO 3
" ITIMES SLOWER THAN GAMMA.F. FOR FURTHER DISCUSSIOR SEE “GENERATING
t1GAMMA DISTRIBUTED VARIATES FOR COMPUTER SIMULATION MODELS",
*'M. B. BERMAN,THE RAND CORPORATION, R-641-PR, FEBRUARY 1971,
DEFINE MEANsKoKKyIsZyAsBsDsEsXsYy AND W AS RFAL VARIABLES

DEFINE STREAM AS AN INTEGER VARIARLE

1F MEAN<=0, LET ERR.F=145 ELSE

IF K<=0, LET ERR,F=146 ELSE

LET 2=0

LET KK=TRUNC.F(K)

LET D=K-KK

IF KK=0, GO TO BETA ELSE

LET E=1 .

FOR I=1 TO KK, LET E=E*RANDOM.F{STREAM)

LET Z=~1L0G.E.F(E)

IF D=0, RETURN WITH Z*(MEAN/K) ELSE

YBETA?"

LET A=1/D LET B=1/(1-0D)

YNEXT?®.

LET X=RANDOM_,F({STREAM)*%A

LET Y=RANDOM.F (STREAM)**B+X

IF Y<=1, GO OQUT ELSE GD TO NEXT

puT!

LET W=X/Y

LET Y=~LOG.E.F{RANDOM,F(STREAM))

RETURN WITH (Z+WxY)%*(MEAN/K)

END

41~

ROUTINE LOG.NORMAL.F (MU, SIGMA, STREAM)

DEFINE MU AND SIGMA AS RFAL VARIABLES

DEFINE S AND U AS REAL VARIABLES

DEFINE STREAM AS A INTEGER VARIABLE

IFf MU<=0, LET ERR,.F=135 ELSE

IF SIGMA <=0, LET ERR.F=136 ELSE

LET S=LOG.ELF((SIGMA%SIGMA)/(MUXMU)+1)

LET U=LOG.E.F{MU)-0.5%S

RETURN WITH EXP.F{NDRMAL.F(U, SORT.F(S), STREAM))
END

ROUTINE NORMAL.F(MU, SIGMA, STREAM)

DEFINE MU AND SIGMA AS RFAL VARIABLES

DEFINE STREAM AS AN INTEGER VARIABLE
NORMALLY, MODE IS RFAL

IF SIGMA<=0, LET ERR.F=137 FLSE

YA' LET X=RANDOMJ.F(STREAM) LET Y=2*RANDOM.F(STREAM)-1
LET XX=X%X LET YY=Yv*Y LET S=XX+YY

IF S >1, GO TO A ELSE

LET R=SQRT.F(-2%L0OG.E.F{RANDOM,F(STREAM}))/S
RETURN WITH MU+(XX-YY]}*R*SIGMA

END

ROUTINE POISSON.F (MU, STREAM)

DEFINE MU, Y AND X AS REAL VARTABLES

DEFINE STREAM AND N AS INTFGER VARIABLES

1F MU<=0, LET ERR.F=138 ELSE

IF My > 6,
RETURN WITH ABS.F{NORMAL ,F{MU,SQRT.F(MU}),STREAM))
OTHERWISE

LET Y=EXP.F(-MU) LET X=1

PAY LET X=X*RANDOM.F{STREAM)

IF X < Yy RETURN WITH N ELSE ADD 1 TO N GO TO A

END

ROUTINE RANDIF{I4J9STREAM)

DEFINE 1,J AND STREAM AS INTEGER VARIARLES

IF J<ly LET ERR.F=139 ELSE

RETURN WITH TRUNC.F(RANDOM.F(STREAM)*(J—-T+1))+I]
END

ROUTINE UNIFORM.F(A, By, STREAM)
DEFINE A AND B AS REAL VARTABLES
DEFINE STREAM AS AN INTEGER VARIABLE
1F B<A, LET ERR,F=140 ELSE

RETURN WITH A+RANDOM.F{STREAM)*(B-A)
END

-42-

ROUTINE WEIBULL.F{SHAPE, SCALE, STREAM)
DEFINE SHAPE AND SCALE AS REAL VARIABLES
DEFINE STREAM AS AN INTEGER VARIABLE

IF SHAPE<=0, LET ERR.F=143 ELSE

IF SCALE<=0, LET ERR,.F=144 ELSE

RETURN WITH SCALE/((-LDG.E.F(RANDOMJF{STREAM)))*%SHAPE)
END

-43-

IX. INSTALLING THE COMPILER

SYSTEM REQUIREMENTS

SIMSCRIPT II is designed to run under 05/360, It is currently
running under RELEASE 19 of MVT on a model 65. There are no known
0S release dependencies.

The compiler requires a minimum core region of 150K. However,
since it dynamically expands depending on the nature of input source
statements, more core may be needed. Generally, compiled programs
will require at least a 52K region (see Sec. II).

SIMSCRIPT II accepts no parameters either at compile time or ex-
ecution time, but standard options (placed on the PARM field of the
EXEC card) are available teo the assembly and link-edit phases.*

DISTRIBUTED SYSTEM TAPE

The SIMSCRIPT II system is distributed on a nine-track, 800 bpi
labeled tape, and contains the following data sets:
1. SYS1.SIM2LIB--an unloaded partition data set used as both an
object and execution time library.

2, SYS1.SIM2--an unloaded partition data set containing the
SIMSCRIPT II compiler and an 0S Assembler F
interface routine.

3. SYS1.SIM2GEN--JCL to generate the compiler from tape to disk.

4. SYS1.SIMPROC--JCL to be added to the installation's procedure
library.

5. SYS1.SIMSAMP--a sample SIMSCRIPT II program.

6. SIM2.COMPILER--compiler source code.

7. SIM2.LIBRARY--SIMSCRIPT library routine source code,
8. SIM2.SUPPORT--support programs for the compiler.

GENERATING THE COMPILER

The following is an example of JCL that can be used to punch the
SYS1.SIM2GEN file. To punch other files, change the LABEL= and DSN=

to appropriate label number and label name.

TFor the assembler, see form C26-3756 and for the linkage editor,
see form C28-6538, both IBM publications.

~bym

// EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=SYS1.SIM2GEN,UNIT=TAPE9,VOL=SER=003381,LABEL=(3,5L)

//5YSUT2 DD SYSOUT=B

//SYSIN DD *,DCB=BLKSIZE=80
PUNCH

/*

The following is the JCL (contained in SYS1,.SIM2GEN) that is used to

"load the SIMSCRIPT II library, compiler and assembler interface.

SIMSCRIPT T1 TARPE T1 NDISK GENFRATION PROCEDURES

THIS JOR ALLOCATES SPACF TN THE DATA SFTS Y6T700.SIMZLIE AND Y6T00D.51IM2

LOCATFD 0N DISK RANDOZ,

THIS JOB THEN MOVES THE FIRST TWN FILES 00F TAPF 003381 TO THE PREALLNCATED
SETS (ON RANDOZ. THE FILFES CIINTATN THE SIMSCRIPT 11 LIRRARY, COMPILER, AND

ASSFMRLFR INTERFACE ROUTINE,

//Y6TO0#SS JOR (B31T,100,77),'TAPE TO DISK!',CLASS=A
// EX+C PGM=1EFRR14

//0D1 DO NSN=Y6T00.SIM2LIBYDISP=(NEW,CATLAY LUNTIT=2314,VIIL=SER=RANDOZ,

77 CDACE=~LIANA24 110N EN_KNY L .CNIMTTRY

~46—

//% SIMSCRIPT II COMPILE, ASSEMBLE, LINK EDIT, EXECUTE
//7SIM EXEC PGM=SIMZ,REGION=150K

//STEPLIB DD DSNAME=Y&6T700.5IM?,DIS5P=SHR

//LOABLIB DD DSNAME=YAT00.SIM2LIB,NISP=SHR

//7SIMUO3 DD SYSOUT=4A,DCR=(RECFM=FBA,BLKSI7E=1330,LRECL=133,BUFNO=1)

//7SIMUOE6 DD DSNAME=ETEMPDISP=(4PASS)I UNIT=(SYSDALSEP=(LOADLIB)),
/7 SPACE=(R0,(5000,1000)),
// DCB=(RECFM=FB,BLKSIZE=B0O0,LRECL=80)
7/751MU0S DD DDNAME=SYSIN
//7SIM,SYSIN DD %
YISAMPLE SIMSCRIPT Il PROGRAM
NORMALLY MODE IS INTFGER
RESERVE D AS 13z LET D{132)=1
WHILE CARRY IS ZERO, DO THE FOLLOWINGaesss
FOR K=1 T0 132 WITH D(K) NDOT ZERD, FIND THE FIRST CASE
WRITE AS /4 B K
FOR KK=K TO 132, WRITE D(KK) AS I 1
ALSD FOR K BACK FROM 132 T0 1, DO
LET StM=2%D(K)
LET DIK)=MOD.F{SUM,10)+CARRY
LET CARRY=DIV.F(ISUM,]10)
LOOP
END
a3

CONTINUE
CONTINUE

NATA

-45=

YOU MUST PAY ATTENTION TO:

RANDO5: DISK CONTAINING THE WORK AREA FOR THE UTILITY PROGRAMS

RANDO2: DISK CONTAINING THE COMPUTER DATA SETS

003381: SERIAL NUMBER OF THE INPUT TAPE

SYS1.SIM2LIB: THE NAME OF THE DATA SET IN THE FIRST TAPE FILE

SYS1.SIM2: THE NAME OF THE DATA SET IN THE SECOND TAPE FILE

Y6700.SIM2LIB: THE NAME WE HAVE GIVEN TO THE DATA SET WE ARE MOVING
THE FIRST FILE ON THE TAPE INTO. THIS NAME IS OPTIONAL FOR YOU
AND MUST BE REFLECTED IN YOUR PROCEDURES FOR USING THE COMPILER

Y6700.SIM2: SAME AS ABOVE BUT FOR THE OTHER TAPE FILE AND ITS DATA
SET

TAPE9: TAPE UNIT USED FOR INPUT TAPE

SOME NOTES ON PROCEDURES

The distributed procedures are designed to be used with an MVI
system; they are listed on the following pages. Each installation
should review the JCL and make whatever changes it feel necessary
before applying the procedures to its system. You may or may not
wish to catalogue SIM2, SIM2CA, and SIMZLG. The sample program
(SYS1.SIMSAMP) is shown imbedded in the JCL to indicate where a pro-—
gram deck goes if you do not catalogue the procedures.

The following is a capsule summary of data sets of the compile,

assembly, and execution steps:

A. The compile step (SIM)

SIMUO5--the source input data set
SIMUQ3-~print urit
SIMUD6--output to Assembler F

B. The assembly step (ASM)

g‘ggﬁ}&?YSUT3 } same as the standard Assembler F data sets

SYSIN--input to the interface routine

INPUT--a temporary data set in which input is passed to the
asgembler

SYSGO--the assembler ocbject module data set ‘

SYSGOX--a data set in which the interface routine copies

the object module and passes it on to the linkage

editor

C. The execution step (GO)

SIMUO3--the standard print unit
SIMU02—the standard punch unit
SIMUQO5--the standard read unit

LOADLIB--an execution time data set from which error messages
are dynamically loaded

~46-

//% SIMSCRIPT II COMPILE, ASSEMBLE, LINK EDIT. EXECUTE

//7SIM EXEC PGM=SIM2,RFEGIDON=150K
//STEPLIB DD ODSNAME=YAT700.SIM?,0DISP=SHR
//7LDADLIB DD DSNAME=Y6T00.SIM2LIBNDISP=SHR
//STMUO3 DD SYSOUT=A,DCB=(RECFM=FBA,BLKSI7E=1330,LRECL=133,BUFND=1)
//SIMUO6 DD DSNAME=ETEMP o DISP=(,PASS)Y UNIT=(SYSDASEP=(LOADLIB)), CONTINUE
/7 SPACE={R0, (5000,1000)), CONTINUE
// DCB=(RECFM=FB,BLKSIZE=800,LRECL=80)
J/SIMUOS DD DDNAME=SYSIN
//7SIMJSYSIN DD =*
1ISAMPLE SIMSCRIPT I1 PROGRAM
NORMALLY MODE IS INTEGER
RESERVE D AS 132 LET D{132)=1
WHILE CARRY IS ZERQO, DO THE FOLLOWINGeesas
FOR K=1 TH 132 WITH D{K) NOT ZERD, FIND THF FIRST CASE
WRITE AS /, B K
FOR KK=K TO 132, WRITE D(KK) AS I 1
ALSN FOR K BACK FROM 132 T0 1, DO
LET SUM=2%D(K)
LET D{X)=MOD.F{SUM,10}+CARRY
LET CARRY=DIV.F(SUM,10)
LOOP
END
/%
//ASM EXEC PGM=MULTASM,COND={16,E0,STM),PARM="DECK,LOAD,NOXREF?,
// REGION=104K
/J/STEPLIB DD DSNAME=YAT00.S51IMZ2,DISP=SHR
//SYSLIBR DD DSNAME=SYS1.MACLIR,DISP=SHR
//7SYSUT1 DD UNIT=SYSDA,SPACF=(1700,(400,50),+sROUND)
//SYSUT2 DD UNIT=(SYSDA,SEP=(SYSUTL)),SPACE=(1700,(400,50),+ROUND)
/75YSUT2 DD UNIT=(S5YSDA,SEP={SYSUT1,SYSUT2)), CONTINUE
/7 SPACE=(1700,(4004+50) ¢4 +ROUND)
//SYSPUNCH DD SYSDUT=8
//SYSPRINT DD SYSOUT=A

//5YSG0 DD DSNAME=ELOAD,DISP={NEW,DELETE),SPACE=(80,(200,50)), CONTINUE
// - UNIT=SYSDA

//SYSGOX DD DSNAME=ELOADSET,UNIT=SYSDA,DISP={MODsyPASS), CONTINUE
// SPACE={B0,(1000,500),RLSE},DCB=(RECFM=FR,BLKSIZE=80)

//INPUT DD DSNAME=&TEMPRY ,UNIT=SYSDA,DISP=(NEW,DELETE), C

/7 SPACE={TRK, {40,5)) 4DCB=(,RECFM=FB,BLKSIZE=3600,BUFND=1)

//SYSIN DD DSNAME=ETEMP,UMIT=SYSDA,DISP=(0LD,DELETE}

//LKED EXEC PGM=IEWL,PARM='LIST,MAP'3COND=(16,EQsSIM),REGCION=104K

//7SYSLIB DD DSNAME=Y6T00.SIMZ2LIB,DISP=SHR

//SYSLIN DD DSNAME=ELOADSET,DISP=(OLD,DELETE)

// DD DDMNAME=SYSIN,DCB=(BLKSIZE=80)

//SYSPRINT DB SYSOUT=A,DCB=BLKSIZE=605

//S5YSUT1 DD UNIT=SYSDA,SPACE=(1024,(50520)y,+ROUND) .

/7SYSLMOD DD DSNAME=&GOSETI(GO) 4UNIT=(SYSDA,SEP=(SYSUT1}), . CONTINUE
// SPACE=(10244(50420,1)),DISP={(+PASS)

/760 EXEC PGM=%,LKED.SYSLMOD,COND=(16,EQ),REGION=52K

//LOADLEB DD DSNAME=Y6T700.SIM2LIB,DISP=SHR

//SIMUO2 DD SYSOUT=B,DCB=(RECFM=FBA,LRECL= 81,BLKSIZE 81)

//SIMUO3 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=133)

//751MU05 DD DDNAME=SYSIN

//GO.SYSIN DD %

/% ’ N
00!

47~

/% SIMSCRIPT 11 COMPILE AND ASSEMBLE

//SIM EXEC PGM=SIM2,REGION=150K

//STEPLIB DD DSNAME=Y6700,51M2,DISP=SHR

//LOADLIB DD DSNAME=Y6700.SIM2L1IB,DISP=SHR

//S51mMu03 DD SYSOUT=A10CB=(ﬂECFM=FBA,BLKSIZE=1330,LRECL=133,BUFNU=1)
//5IMUOC6 DD DSNAME=ETEMP,DISP={4PASS) +UNIT=5YSDA,

// SPACE=(80, (5000,10001)).,

// DCB=(RECFM=FB,BLKSIZE=800,LRECL=80)

//SIMUOS DD DONAME=SYSIN
//5IM.SYSIN DD =
/*®

//ASM EXEC PGM:MULTASMvCDND=(167E0151M)vPARM='DECK;NDLDAD,NOXREF',
rf REGION=104K .

//STEPLIB DD DSNAME=Y6700.SIM2,DISP=5HR

//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR

//5YSuUTl DD UNIT=SYSDA,SPACE=(1700,(400450) »,yROUND}

//5YsSuUT2 0D UNIT=(SYSDA,SEP=(SYSUT1))1SPACE=(17009(400,50)99'R0UND)
//SYSUT3 DD UNIT=(SYSDAysEP=(SYSUTI,SYSUTZ))r

/7 SPACE=(17004(4004+50) 4 sROUND)

//SYSPUNCH DD SYS0UT=B

//SYSPRINT DD SYS0UT=A

//INPUT DD DSNAME=8TEMPRY.UN[T=SYSDA,DISP=(NEHqDELETE)9
/7 SPACE=(TRK,(20.5))9DCB=(RECFM=FB,BLKSIZE=3600,BUFND=1)
//SYSGOX DD DUMMY,DCB=BLKSIZE=80 '
//SYSIN DD DSNAME=ETEMP ,UNIT=SYSDA,DISP=(0OLD,DELETE)

/7% SIMSCRIPT 11 LINKEDIT AND EXECUTE

J/LKED EXEC PGM=IEWL,PARM='LIST,MAP',REGION=104K
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=605

//SYSUT1 DD UNIT=SYSDASPACE=(TRK,(10,10))

//SYSLIBR DD DSNAME=Y6700,SIM2LIB,DISP=SHR

//SYSLMOD DD DSMAME=£GOSET(GO)4DISP=(,PASS) UNIT=S5YSDA,
7/ SPACE={3025,150,2051)) :

//7SYSLIN DD DDNAME=SYSIN.DCB=(BLKSIZE=80)

//LKED.SYSIN 0D *

1 ‘

7/60 EXEC PGM=%,LKED.SYSLMOD,COND=(5,LTsLKED},REGION=52K
//LOADLIB DD DSNAME=Y6700.SIM2LIB,DISP=SHR

7/SIMUD2 DD SYSOUT=B,DCB=(RECFM=FBA,LRECL=81,BLKSIZE=B1)
/751MUO3 DD SYSOUT=A,DCB=(RECFM=FBA,BLKSIZE=133,LRECL=133)
//SIMUO5 DD DDNAME=SYSIN

//GOLSYSIN DD *

/%

00002006

€00004000
€C00005000

00008000

00011000
00012000

C00013000
00014000
00015070
00016000

C
00018000

00001000

00003000
00004000
C00005000
00006000

00009000

00011000
00012000

DEPARTMENT OF THE AIR FORCE
FEDERAL COMPUTER PERFORMANCE EVALUATION AND SIMULATION CENTER (AFDAA) /&Y
WASHINGTON, D.C. 20330

1¢ APR 1977

SHARE Program Library Agency

Triangle Universities Computation Center
Post Office Box 12076

Research Triangle Park, NC 27709

ATTN: Librarian
Reference Program Catalog Number: 360D-03.2.014 -~ SIMSCRIPT II

The attached user report was forwarded to me as the listed
author of the referenced SHARE Program. The user report
makes the suggestion that the library software be modified
to reflect several identified problems. This letter is

to inform you that the SIMSCRIPT II program now resident

in the SHARE lijibrary has not been modified since 1969; there
are no activities in progress that I am aware of that might
make such modifications. My organization, for example,

has dealt with a commercial version of the SIMSCRIPT II
system for the past four years.

Accordingly, I recommend that this user report be distributed
along with copies of the library program when it is requested,
as no modifications to the library program will be made in
the future.

Sincerely yours,

HILIP JY| KIVIAT
echnicall Director

SHARE LIBRARY USER REPORT -

PROGRAM CATALOG NUMBER _ 3¢ QD -03, 2.0\

COMPUTER MODEL 270 /163

OPERATING SYSTEM _MyVs. REL 3.7

1. Were you able to implemeut this program using the instructions supplied?

YES, AFTER AN iN)TIAL PROBLEM WITH FILE NAMES.

2. Did the program run as documented?

YES, BUT ONLY AFYER SEVERAL ERRCRY wEELE (ORRECTEDR |

3. Was the documentation adequate? NST GQUITE . THERE was WSUFFIGOENT

DOCUMENTATION FCR THE MULTIFLE ASSEMBLER INTERFACE , AND CORRELT

TAPE FILE NAMES WERE HARD To FIND,

4. Did you find any errors in the program?

YES SUE ATTACHED NOCTES .

5. Do you have any suggestions to improve the distributed material?

Y€s . SEE ATTA(HED LIST.

6. Comments:

NAME K . WHATMOUCH DATE /3'1‘1 INSTALLATION CODE WA

(if any)
ADDRESS_COMPUTING SEAVICES GhoV T

~ PLEASE RETURN TO:
wWERPONS RESEARCH ¥:5‘TA&L\SHMENT,

SHARE Program Library Agency
BeX 2151 (SALISBURY , 51€3 |
SQUTH AUSTAALIA |

‘Post Office Box 12076
Research Triangle Park, NC 27709

SPLA/SLUR REV. 7/76

Triangle Universities Computation Center

ERRORS IN SIMSCRIPT II COMPILER AND SAMPLE PROBLEM

The following problems were encountered and solutions applied to

make the sample problem run correctly:

1.

The compiler ABENDED with error 204 (protection) while processing
the first few statements, after generating a 'PRMB CSECT' assembler
statement with nulls instead of blanks.

The error was traced to the Tibrary routine RRES$R (reserve
storage for user arrays). After the GETMAIN at source statement
XRES0870, register 0 is assumed to hold the length of the gotten
area, but the 0S/VS2 GETMAIN overwrites it.

The source code was extracted from the distribution tape and
modified by inserting after line XRES0870 the statement "L RO,ALPHA"
to restore the register, then re-assembled. The library load
module, and the RRES$R CSECT in the compiler, were replaced using
the Tinkage editor.

The multiple assembler produced no SYSPRINT output and an unusable
object module.

The error was found in the alternative DDNAME 1ist, passed by
module MULTASM when it dynamically invokes the assembler for each
source CSECT in the compiler output. The byte count for the
replacement DDNAMEs incorrectly included its own two bytes and
our assembler treated the twc bytes as another eight.

No source 1isting of MULTASM is available, so AMASPZAP was used
to change the count thus:

NAME MULTASM MASM
VER N38E 0N02A
REP 038E 0028

The assembler rejected the 'LOAD' option specified in the JCL for
the sample problem. Under 0S/VS2, an object module is produced by
the '0BJ' or 'OBJECT' option. The sample JCL was corrected.

After correction 3, no combined object module was produced.
This happened because multiple assembler checks for a parameter

'LOAD' or 'NOLOAD' to decide whether to copy object module output
to a combined data set (DDNAME SYSGOX).

/2

AMASPZAP was used to modify MULTASM to check for a parameter
beginning 'OBJ' or 'NOOBJ', without checking its length:

NAME MULTASM MASM

VER 03B8 D3D6C1C4

REP 03B8 D6C2D1C5

VER 03C0 D5D6D3D6C1C4
REP 03C0O D5D6D6C2D1CS
VER 40 47707048D503
REP 40 470000000502
VER 52 47707066D505
REP 52 470000000504

This solution is imperfect and re-assembly would be better.

The sample program reached execution and ABENDED with code OC1.

The linkage editor did not allow MAIN as a default entry point.

An ENTRY MAIN control statement was supplied and the sample problem
executed correctly. The problem can be avoided in future by a

permanent or user-supplied JCL change, but a compiler change would be
more to the point,

SUGGESTED IMPROVEMENTS

Correct the bugs in RRES$R and the multiple assembler interface MULTASM.

Modify the compiler routine END to produce an "END MAIN" statement in
the assembler language output for the main routine.

Supply a source listing for the multiple assembler interface.

Supply the correct distribution tape file names in the write-up. The
name changes may have been essential but are buried in a map supplied
with the tape.

Allow sequencing of Simscript source statements in bytes 73-80. This
will make it easier to create and maintain models using TSO EDIT.

TRIANGLE UNIVERSITIES COMPUTATION CENTER

SHARE PROGRAM LIBRARY AGENCY S‘-iARE

PO, Box 12076 « Research Triangle Park, N.O', 27709
felephone (code 919) 5495291

919.549.0671

October 19, 1978

TO: Users of The SIMSCRIPT II Programming Language Program

FROM: Pam Durham, SHARE Program Library Agency

The attached user report contains some valuable comments about the use of
Program No. 360D-03.2.014, “The SIMSCRIPT II Programming Language."

ﬁ SHARE PROGRAM LIBRARY AGENCY
SHARE
USER REPORT

PROGRAM CATALOG NUMBER___360D-03.2.014
I1BM 370/3168

COMPUTER MQDEL

OPERATING SYSTEM_MVS 3.7

1. Were you able to implement this program using the instructions supplied? yes

2. Did the program run as documented? _YeS, but only after installing fixes suggested by Computing

Services Group of Australia. Plus one additional-fix.

3. Was the documentation adequate? __ €S, especially the fixes suggested by the Australian group.

4. Did you find any errors in the program? __We_experienced an §C4 error - see below

5. Do you have any suggestions to improve the distributed material? lemm
set, the "//GO.SYSIN DD *" card should be included in the procedure as the last card.

6. Comments: __ S€€ attached.

name _Bruce C. Graves pate 8/29/78 INSTALLATION CODE
(if any}
ADDRESS rations Research Dept.
. PLEASE RETURN TO:
IBM Corporation
SHARE Program Library Agency
D. 812/X5k85 Triangle Universities Computation Center
Post Office Box 12076
P.0. Box 12195 Research Triangle Park, NC 27709

Research Triangle Park, NC 27709

SPLA/SLUR REV. 11/76

The tape did not contain the '//GO.SYSIN DD *' card in the procedure file

(file #4), although it is shown on page 46 of the documentation. If the
'//GO.SYSIN DD *' card is omitted, the GO step will abend. The //SIMU@5 DD
card refers to DDNAME=SYSIN. If SYSIN is missing, the scheduler will make
//SIMU@5 a dummy. SIMSCRIPT always opens and does a read ahead on unit @5,

the card reader. If it is dummy without DCB parameters (LRECL, RECFM, BLKSIZE),
QSAM will program check. SIMSCRIPT will intercept and close. SIMSCRIPT will
program check during its close housekeeping.

Specific errors are: A SIMSCRIPT error 204 (protection exception) followed by
an @C4 in CSECT 'RUSE$R' in routine 'GETO' called by CSECT XCLS, who was closing.
The JCL listing has a message flagging the SIMU@5 DD card.

Bruce C. Graves

Operations Research Department
IBM Corporation

D. 812/X585

P.0. Box 12195

Research Triangle Park, NC 27709

