SHARE PROGRAM
LIBRARY AGENCY

HHHHHHHHHHHHH

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
3333333333333

SHARE PROGRAM LIRBRRARY SUBMITTAL FORM : SHARE PROGRAM LIBRARY AGENCY

Triangle Universities Computaticn Center

Post Office Box 12076

Research Triangle Park, North Carolina
27709 USA

Attention: Mr. Joe Ragland

SPLA CONTROL NUMBER:

This form,shouid be completed and subﬁitted!with the'ﬁrogram package to the SHARE
Program Library Agency at the address -shown above.. Standards and instructions for
submitting programs are in the 'SHARE Program Library Standards Manual',

(1) Program Number (to be filled in by SPLA) 36(5}-* %, 0,003
{2) System Type (machine)ciciiinneereneonanrons S/360
(3) Search Key tvuievivacenernnsanans Aereeaas TNTFORT ~ Interval Arithmetic

Interpreter and Subroutine Package

(4) Programming Language ...ceicesscaososnsees PL/1, FORTRAN, Assembler
(5) Author's Name and Address csssvsessD.P, Laurie '

National Research Institute for

Mathematical Seiences of CSIR, P.0. Box 395, Pretoria, South Africa

(6) Direct Inquiries to Name and Address Author
(if different than Author)

(7) Title of Program o.eoeeveaasnas INTPORT - Interval Arithmetié‘Interpreter and

Subroutine Packsge

(8) Submitter's Installation Membership Code..; f%ﬁQ

(9) Submitter's Own Program quntificatiqn and Suffix(Optional)... INTFORT

(10) Primary Subject Code...cuivenvunven.;...;....;.;: 40.0

(11) Operating or Mﬁnitor System Required ' ‘ 360/08

(12) New or Revision Code (if revision, show prior Program Number in Item 1).. N
(13) Year Completed...... PR PPN fereieaen. Weetersersesstrorarocaa 1972
(14) Date of Submittal...uv.eeeenennnenn e i e st aeseanstesessoranesos 31.10.1973
(15) Documentation (number of original pages submitted).....cocceeaa. iii 4+ 12

(16) Abstract (should contain sufficient information for a reader to determine
the value of the program). Listed on the reverse side of this form are
subjects which may serve as a guide for a descriptive abstract.

EEH

Lt P

SHARE PROGRAM LIBRARY SUBMITTAL FORM

DiSCLAIMER
Triangle Universities Computation Center (TUGCC)

Subject Guide: serves solely as the distributlon agent fer contributed

pregrams and does not fesl or maintain them, They
are distributed essantially in the original form sub-

a. Purpose mittad by the author. Naithar TUCG nor SHARE, 1NG.,
b. Programming Language used makes any warranty, expressed or implied. as to the

documentation, function, e -
¢c. Version and modification level or release nuchexed mﬁgmm: 7 or performance of the con
d. Field of application
e. Type of routine (main program, subroutine, etc.) ,
f. Specific description of machine requirements

!
ABSTRACT

The INTPORT interpreter converts explicit type. declarations, assignment and

arithmetic IF statements for interval wvariables ¢ equivalent FORTRAN state=

ments. A subroutine package for performing the interval arithmetic in gingle

or double precision is provided. The interpreter is also suitable for use

with any fancy arithmetic subroutines (e.g. multiprecision) that use

<

synonomous subroutines for the arithmetic operations.

DISCLAIMER

Friangte—teirarsittes—Computatonr—Cemer—Toes)
serves solely as the distribution agent for contributed
programs and does nol tost or maintain them. They

=Y TNy e ohiqnal torm Sub-
mitted by the author Neither TUCC nor SHARE, INC.,
makes any warianly, expressed or implied, as to the

agtumentation, function, aor periormance of the con-
tributed programs,

(Please attach additional pages if necessary).........Total pages attached

Permission to Publish

"I hereby give the SHARE Program Library Agency permission to reprint, re-

17}
(18)

produce, and distribute this program." .
Signature of Submitter and Date M C““‘d\.‘- A-1X:1973
/), / \
N) f -
b -

RSV Ryvew ez iy

Signature of Installation Addressee

Magnetic Tape Key

Tape Volume Name : INTERY

This volume contains four files with standard labels

- as follows: ("he:?ck Aadd dEA}.SlTLIf ARE AS okof&fes‘czl)

File 1

File 2

File 3 :

File 4 :

: DSNAME=LOADLIB : Contains unloaded PDS as created by 1EHMOVE,

including the interpreter INTFORT as well as the intervel
arithmetic subroutine library.
83 blocks of 800 bytes. in EBGDIC,

DSNAME=INTERP : Contains PL/1 source of interpreter.
38 blocks of 800 bytes in ERCDIC.

DSNAME=SUBRCUTS : Contains FORTRAN and Assembler source of
interval arithmetic subroutines, preceded by //FORT.SYSIN DD *
and //ASH.SYSIN DD * JCL statements respectively.

42 blocks of 800 bytes in EBCDIC.

DSNAME=TESTPROG : Contains complete job deck (except JOB card)
for a test program, including JCL, extended FORTRAN source and
data cards.

11 blocks of 800 bytes in EBCDIC.

e

e

NATIONAL RESEARCH INSTITUTE FOR _MATHEMATICAL SCIENCES
NRIMS/W/67/1

Interpreter and Subroutine Packace for
Interval Arithmetic on the IBM/360

by

D.P. Laurie
Numerical Analysie Division

- i1 -

Abstract:

An interpreter is described which converts explicit type declarations,
assignment and arithmetic IF statements for interval variables to equiva=
lent FORTRAN statements, A'subroutine package performing thelinterval
arithmetic is provided, The interpreter is also suitable for use with
any fancy arithmetic subroutines (e.g. extended precision) that require

synonymous subroutine calls for each and every arithmetic operation.-

0.

2.

3.

.4.
5

~ iii -

CORTENTS

Machine Interval Arithmetic on the IBN/360
Interval Arithmetic as a FORTRAN extension
The Interval Subroutines and Interpreter
The Interval Statements

Type DeRdaration Statement

Asgignment Statement

Arithmetic IP Statement
Programming Notes and Hints

Other Subroutine Libraries

APPENDIX A: Disgnostic Messages
APPENDIX B: Job Control Language

APPENDIX C: An Example

Table 2,1:
Interval Arithmetic Subroutines

Interval Arithmetic Functions

Table 3,1:

Type of Result of Arithmetic Operations

Page

SANEERY, BV, R Y

~1

10

1

-1 -

Machine Interval Arithmetic on the IBM/360

In the great majority of all caleculations on computers the numbers
involved are subject to imprecision, either because they arise from
measurements or because of the fact that computers only carry a Tinite
number of significant digits. Almost always, no attempt is made to
keep track of the errors that may be present in the final results.

The purpose of interval arithmetic is to carry slong automatic
error estimates. This is done by considering, rather than a rumber,
an interval containing the entire range of possible values. An arith=
metic operation on two intervals yYields an interval containing all
possible results of the operation on two elements of each interval.
The final resulting intervals are always unduly pessimistic, but sharper

bounds are usually very cumbersome to obtain even by analytical methods.

On an actual couputer, the exact real interval arithmetic of theory
is of course impossible; therefore machine interval arithmetic is used,
This means that instead of an exact interval, the smgllest machine in=
terval containing it is uged. This keeps track automatically of all
the possible errors, whether arising from the initiasl data or from the

round-off errors in the computation.

On the IBM/360, truncation is always used rather than rounding,
i.e. if & given number (whether given as a decimal expansion or a too
long binary expansion, as arises from computation) is not a machine
muber, it is represented by the nearest machine number that is not
greater in absolute value, rather than Just the nearest machine number.
This simplifies the writing of interval srithmetic subroutines, as it
is then known that the next machine number greater in absolute value
than the 360 representation of g given real number will then also be
greater (absolutely) than the real number. A minimal machine interval

can thus readily be found.

The machine 1nterval arithmetlc system described in this report
uses two 1mplementat10ns, one in single precision and the other in double

pI‘GCl sion.

Interval Arithmetic as a FORTRAN extension

Interval arithmetic is normally used with FORTRAN by declaring an inter=

val variable as an array of dimension 2, and using special ubroutlnes

Y4

to perform the interval opergtions.

procedure,

-2 -

This is & tedious and error-prons

What is needed is the ability to declare an interval

variable as such, and use it in arithmetic and IF statements just like

a normal wvariable.

The INTFORT program goes some way towards remedying this. It

accepts as input normal FORTRAN IV programs, but ineluding a few special

statements concerning interval variables. These statements are identis

fied by the charscter I in column 1.

It produces as output the same

FORTRAN IV program, but with these statements converted to valid

FORTRAN IV using the same subroutines for interval arithmetic as pre=

vicusly.

in assignment and IF statements.

Interval Arithmetic Subroutines

Name

ADD
DADD

NEG
DREG

EQU
DEQU

INT

SUB
DsSuB

MUL
DMUL

DIv

POW
Drov

SINGLI

DOUBLI

Argument

Argument

The programmer can thus use normal FORTRAN expression format

14t types Action
4,B,C I4,74,14 C « A+B
ig,Is,T8
4,C 14,14 C < ap
18,18 -
A,C 14,14 C «A
. 18,18
A,C E,I4 A is assumed to be the truncated
machine representation of a non-
wachine number, € is set to the
smallest machine interval containing
that number.
A,B,C 14,144,714 C «A-B
18,18,18
4,B,C 14,14,14 C «AxB
18,18,18
A,B,C 14,14,14 € «A/B If 0 is in B, C is set to
) the largest machine inters=
V&l-
A,I,C 14,P,14 C e Axsl
I8,F,I8
4,C iB,14 C ¢ The smallest machine interval
containing A.
4,C 14,18 C < The double precision equivalent

of A.

-3 -

Interval Arithmetic Punctions
Argument Argument Function

Neme list types type Action

TUNE A,B,C 14,14, I4 F If A and B intersect, C is

TUND - 18,18,I8 set to the union of 4 and B,

: and the value 1 is returned.

Else C is unchanged, and 0
is returned.

ISECTE 4,B,C I4,14,14 F If A and B intersect, C is

ISECTD 18,18,1I8 set to the intersection of

A and B, and 1 is returned.
Else C is unchanged, and 0
is returned,

Note: The above four subprograms are also callable as subroutines
when the returned function value is not required.

ICONTE 4,B 14,14 P -2 ig returned if 4 and B
ICONTD 18,18 overlap
-1 is returned if B contains
A
0 is returned if A and B
are equal
1 is returned if A contains
B
2 is returned if A gnd B
are disjunct '

-

HALF A Iz E The truncated midpoint of A
DBEALF i8 D ig returned

WIDTH A Ia E The truncated width of 4 is
DWIDTH I8 D returned

INTSGE 4 I4 F If A contains 0, 0 is re=
INTSGD 18 P turned. Blse sign (A) is

returned,

Explaﬁ%ion of Tvpes
X

F INTEGER»4
E REAI»4

D REAL#8

14 INTERVAL=4
18 INTERVAL#S .

Table 2.1

The Interval Subroutines and Interpreter

In order to understand the use of interval variables, we must know how

the eventual FORTRAN program will look. This requires knowledge of the

al

3.

-4 -

subroutines used. (See Table 2.1).

The INTFORT program acts as an interpreter: the special statements
involving interval variables are converted to FORTRAN type declargtions,
subroutine calls and iF statements. It is designed to be compatible
with the G and H level IBN/360 FORTRAN compilers.

The interval statements resemble FORTRAN type declaration, assign=
ment and arithmetic IF statements, and have the obvious meaning implied
by the notation used., 4in interval is regarded as zero if it contains
2ero, and positive or negative if the entire intervgl is positive or

negative, respectively,

The Intervel Statements

General Format:

Each interval statement is identified by the letter I in column 1.
Columns 2-5 are available for a statement number if the statement is an
executable one, while column 6 must be blank, since no continuation
cards are permitted, Columns 7~72 may be used in accordance with the
format for the particular stgtement (descrlbed below) while columns

73-80 can be used by the programmer for any purpose he thinks fit.

Action of the Interpreter:

o

Each interval statement is reproduced unchanged as a comment statement,
with a C replacing the I in column 1, The remaining statements produced
are FORTRAN statements, details gbout which are glven in section 4,
"Programmlng Notes and Hinte". Self-explanatory diagnostics are provided,
as listed in Appendix A.

Subroutines snd Funetions:

If these ocour, each END statement in the program should be marked with

an I in column 1 to-allow recognition by the interpreter.

5 cennns

Type of Type of operand 2

operand 1 REAL#/ REAI*8 | INTERVALx4 | INTERVAL*S
REAL»4 REAL%4 REAL*8 | INTERVAL*4 |illegal '/
REAL*8 REAL*8 REAL*6 | INTERVAL#4 2)| INTERVALsS
INTERVAL*4 | INTERVAL*4 | INTERVAL*4 /| INTERVAL*4 | INTERVAL#S
INTERVAL®S | illegal '/ | INTERVAL*8 | INTERVAL*S | INTERVAL¥®

1) The result will have type INTERVAL#*8 with probability %, and give

a specification exception in the other cases.

2) The long part of the double precision pumber will be ignored.

Table 3,1: Type of result of erithmetic operations +, =, *, /

Type Declaration Statement

Format: INTERVAL*s a,(k.),ee.,a (k)
Where: *s represents the length in bytes that each end point

of the interval will occupy. s may be 4 or 8; if 8

is omitted, »*4 is assumed.

represents & vglid FORTRAN variable name,

e

is a 1list of dimension extents, to be omitted if B, is
not an array. FEach k is a list of one to six integer
constants; if 2; appears in a subprogram parameter list,

integer variables may also appear in the list.

The interval declaration statement is necessary for all interval variables
that will be used.

Examples

INTERVAL A
INTERVAI#8 4,B(5,5)

Agsienment Statement

Format: x=3xy

6/ vannn.

- 6 -

Where: X represents the name of a variable or arrgy element that

has appeared in a preceding type declaration statement.

s represents an expression formed as in FORTRAN, con=
taining interval variables (or array elements) and
(optionally) sub-expressions of ordinary FORTRAN
variables, constants, functions or array elements. Such
sub-expressions are not examined for type, and the user
must take care that they have legal type (see table 3.1).
An interval varigble may only be raised to an integral

power,

The expression y is evaluated according to normal operator prece=
dence rules, and assigned to x. If two quantities of unlike type are
© combined (except for the *» operator), one is first converted to the
type of the other so that both have the type of the result as specified
in table 3.1,

Exomples:
If A and B are INTERVAL*4, C is INTERVAL*8 and D is REAL#8, the

following statements are valid:

=B
B+

D#(B + ¢)
3.14159265
= A%2

i

i

= kb
|

The following statements may cause errors:

cC =1, (Correct is C = 1.D0)
A = A**el

Arithmetic IF statement

Format: IF (y) 841 By 8
Where: X is an expression as in the assignment statement, con=

taining at least one interval variable.

s are FORTRAN statement numbers,

T eevnnn

-7 -

If ¥ is wholly negative, control is transferred to statement 83

if y contains 0, control is transferred to statement 855 if y is

wholly positive, control is transferred to statement s_.

3

Bxample:
If A is of type INTERVAL»4, the following statement is valid:

Ir(4) 1,2,3

Programmine notes and hints

Each interval variable (or array) is interpreted as an array of real
variables with the same length and with one more dimension (of extent
2) than the corresponding interval variable (or array). To ensure that
the end points of each interval occupy contiguous storage locations, the
extra dimension is added at the left of the subsecript list. An
INTERVAL statement might appear thus in the outputted FORTRAN:

¢ INTERVAI#8 A,B(5,5)
REAL+8 A(2), B(2,5,5)

When referring to an unsubscripted interval variable in a sub=
routine call, the name itself is sufficient; when referring to a
subscripted array name, however, the laft dimension must have the

subscript 1, thus:

C A= 3(3,2)
CALL DEQU(B(1,3,2),4)

Note that the interpreter will not examine such s subscript list
in any way. The following error will thus only be discovered by the
FORTRAN compiler:

¢ | INTERVAL X{ANYOLDJUFK)
REAL*4 X(2,ANYOLDJUNK)
In an assignment statement, mixed mode in an expression is tole=
rated with the limitations set out in table 3.1.

The interpreter classifies all variables in three groups: those
that have been declared ss INTERVAL*8, those that have been declared
as INTERVALx4, and those that have not been declared as either. Before

8/ venres

5.

-8 -

an arithmetic operation between an interval A and an ordinary variable
X is performed, X is assigned to a dummy interval variable of the same
length as A, This assignment is only compatible when X is of the same
length as A, The programmer thus must use the FORTRAN built~in funetions
SNGL, DBLE, FLOAT and DFLOAT if necessary to ensure such compatibility.
Similarly, the IFIX function may be needed to ensure that the exponent

after the ** operator is of type integer.

Interval constants do not exist; assimments of congtants to

interval variables can be made in two ways:

(i) Straightforward assignment to the end points, e.g.:

A(t) = 1.D0
A(2) = 1.00

I

(ii) Interval assignment statement, e.g.:

¢ A=1.1D0
CALL DINT (1.1D0,4)

The first method must be used when the number is an exact machine
number, as the second method always assumes the constant to be the
truncated machine number nearest to, but lower than the constant (which
is the normal situation for & FORTRAN constant).

Other Subroutine Librsries

Since the subroutines needed are only provided at linkage time, the
interpreter cgn'be used for any arithmetic requiring logical words of

two normal variables, e.g. extended precision routines.

These subroutines may be supplied either as source decks included
at compile time, or as compiled (object or load) modules included at
linkage time. Only those subroutines to which actual calls are gene=
rated by the interpreter need be provided,

For details about the subroutines, refer to table 2.1.

VA

-9 -

APPENDIX A: Diagnostic Messages

Warning (Severity code 4) =

NAME name TRUNCATED 70 SIX CHARACTERS

Interpreting continues with the shortened name appearing in the

FORTRAN output.

Errors

01
02

03
04
05
06
07
08

09

10

11
12

13

Severity code 8

UNRECOGNIZABLE STATEMENT

INVALID LENGTH SPECIFICATION
Byte length must be 4 or 8.

RIGET PARENTHESIS MISSING
Dimension extent list is not closed,

SYNTAX ERROR IN INTERVAL STATEMENT
Some other symbol was found where a separating comma was expected,

NULL ASSIGNMENT STATEMENT
Nothing appears after the "= sign.

ILLEGAL CHARACTER "c" FOUND IN ASSIGNMENT STATEMENT
LEFT SIDE OF ASSIGNMENT STATEMENT NOT OF TYPE INTERVAL

MYSTERIOUS SYNTAX ERROR OR INTERPRE?ER Bug
Hopefully, this will never occur. °

EXTRA "¢" FOUND IN ARITHMETIC CONSTANT
An arithmetic constant contains more than one decimal point, exponent
designator (B or D). :

ILLEGAL SYNTACTICAL ELEMENT "element" TO RIGHT OF EQUAL SIGN
A right parenthesis or arithmetic operator other than "+" or “.t
follows the "=¢ sigmn. '

UNBALANCED parity PARENTHESIS

ILLEGAL SYNTACTICAL ELEMENT "element 1" TO RIGHT OF ELEMENT "element 2"
Juxtaposition of two operators, variables, constants or parenthesized
expressions constituting a syntax violation.

EXPRESSION IN IF STATEMENT NOT OF TYPE INTERVAL

The severity code is passed to the job scheduler and may affect

execution of following job steps.

10/-|;nor

- 10 -

APPENDIX B: _ Job Control Lancuage

//JOBLIB DD DSN=NNWW,P5408, INTERVAL , DISP=SHR
//INT EXEC POM=INTFORT
//SYSPRINT Dp SYSOUT=X , DCB=(RECFM=FBA ,BLKSIZE=7182 ,LRECL=13%)

//FORTIN DD UNIT:SPOOL,SPACE:(TRK,(20,10)),DCB:(RECFM:F,BLKSIZE:BO),
DISP=(NEW,PASS)

//ouT DD UNIT=SPOOL,SPACE=(TRK,(10,5)) ,DCB=(RECFM=F ,BIKSTZE=80)

//SYSIN DD «
(Input to interpreter)
P
/%

// EXEC FORTGCG,COND=(5,LT)

//FORT. SYSIN DD DSN=+, INT, FORTIN,DISP=(OLD, DELETE)
(See note)

//G0.SYSLIB DD DSN=SYS1,FORTLIB,DISP=SHR
7/ DD DSN=#,JOBLIB,DISP=SHR

//GO.SYSIN DD »
(dats cards) Optional
/*

Note: If FCRTRAN subroutines that need not go through the interpreter

are used, they are to be inserted at this point as fofiows:

// D =

{FORTRAN source)
/*

1/ vinann

-1 -

APPENDIX C: An Exsmple

The following subroutine caleulates the value and derivative of a poly=
nomial by Horner's scheme. The coefficients of the polynomial are assumed

to be stored in the interval array 4.

SUBROUTINE FUN(X,F,D,N)
I INTERVAL X,F,D,HORNER(11),4(11)
W1 =b+1
I HORNER(N1)=a(N1)
DO 1 J=t,N
I=N1-J
1 HORNER(I)=X*HORNER (I+1)+A(T)
1 CONTINUE
F=HORNER(1)
D=HORNER (N1)
NM=N-1 _
DO 2 J=1,MM
I D=X*D+HORNER{1)
2 CONTINUE
RETURN -
END

N.B. Note that the end of a D0 160p may not be an interval statement,
as all such statements are translated to subroutine calls and are thus

transfer statements,

The generated FORTRAN statements are (excluding the comments, which

are reproductions of the statements marked I):

SUBROUTINE FUN(X,F,D,N)

REALx4 AEO01(2)

REAL*4 X(2),7(2),D(2) HORNER(2,11),a(2,11)
Ni=N+1 '

'CALL EQU(A(1,N1),HORNER(1,N1))

DO 1 J=t,N1

I=N1-J

CALL MUL(X,HORNER(1,I+1),4E01)

12/0-01'0

- 12 -

CALL ADD (£EO1,4(1,I),HORNER(1,1))
1 CONTINUE

CALL EQU(HORNER(1,1),F)

CALL EQU(HORNER(1,N1),D)

NM=N-1 '

D0 2 J=1,NM

I=N1-J

CALL MUL(X,D,£E01)

CALL ADD(#EO1,HORNER(1,I),D)
2 CONTINUE

RETURN

END

This routine was used in g program to compute intervals containing
the roots of a polynomial that way itself have interval coefficients. The

sensitivity of roots to changes in the coefficients could thus be studied.

CJ/DPL/EB
21.2,1972

