SHARE PROGRAM
LIBRARY AGENCY

HHHHHHHHHHHHH

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
5555555555555




SHARE PROGRAM LIBRARY SUBMITTAL FORM SHARE PROGRAM LIBRARY AGENCY

Triangle Universities Computation Center
SHAFE’ Post Office Box 12076

Research Triangle Park, North Carolina USA 27709
SPLA

Thic form should be completed and submitted with the program package to the SHARE Program Library Agency at the ad-
dress shown above. Standards and instructions for submitting programs are in the SHARE Reference Manual, Section 6.

(1 Program Numbe: {to be filled by SPLAY., . . . . . . jéQD_“' 34’-0'001

@ Title of Program . . . . . _FLIP: A computer program for fuzzy reasoning
(3. System Typetls} (Machine). .- e e _Uﬁﬁd_OﬂJBM_&ﬁQLSQ_Am_OJ}hﬁLS_.__
(4, Search Key(s) . . . . . . .+ .« . - . . - Euzz‘y! lOgiC, Peasoning
®
(5" Programming Systems/Languages . . . . FORTRAN

3] Primary Subject Code

{7 Minimum System Requirements

'.-jIB New (N} or Revision (R) {if revision, show prior Program Number in ltem 1} N

@ Date of Submittsl . . . . . ... . 2 Aug. 1979

(100 Documentation 'number of original pages submitted) . . . . . . . . . 1 +1 + 25 + form
{11) Author's Name and Address . . . . . Robin Giles _

Mathematics Dept

Queen's University

Kingston, Ont K7L 3N6

(1;. Direct Techmcal Inguiries to Name & Address CANADA
(if different than Author}

(1.3 Subm-tier's Instultation Membership Code . . .« - - ___Q_K_f_ .-

(1) Abstract {should contain sufficient informauon tor 4 1eader to determine the value of the program}. Listed on the re-
vorse side af this {gom are subjects which my serve as a guide for a descriptive abstract.

s3f OYOOT e sed 1Y 76




SHARE PROGRAM LIBRARY SUBMITTAL FORM
Subject Guide:

a. Purpose

b. Programming Language used

. Version and modification level or releasy number
d. Fietd of application

= Type of routine {main program, subroutine, ete.)
f. Specific description of machine requirements

See _attached pages

b — - —

DISCLAIMER

ion Center {TUCC)

Frianora—bnt " ;
sarves solely as the distribution agent for conliributed
progrems and does not test or m-'n.a]n ‘hmn They

'Y

= - ST ererTeTTusT oAty i —the o ul:‘l for o b
mitted by the authar. Neither TUCC nor SHARE, 1'C.,

mokez ony warrrnly, expressed or implied, &5 to the

o docvmaentulion, Ningciion, of performance o the Tons—"
utribuled proegrams.

[
! (Please attach additional pages if necessary) . . . .  Total pages attached ___ &

An - Al k ﬂowiedqemem ot Assistance” statement must be attached 10 this Submittal Form.

Permis.iin to Publish
i hereby give the SHARE Program Library Agency permission to reprint, reproduce, and distribute this program”’

(15} Swnature of Submitter and Date ‘{Q%‘A‘?%— 2 August 1979

{18} Gignature af Installation Addressee . %

SPLA “GU1 IR Reuvised 11.76




FLIP: A COMPUTER PROGRAM FOR FUZZY REASONING
ABSTRACT

This is an interactive computer program, intended primarily
for use at a screen terminal, which implements the procedure
proposed in "A formal system for fuzzy reasoning” (Fuzzy Sets and
Systems, Vol. 2, No. 3, 1979. The problem in question is that of
deciding what conclusions may be drawn in the presence of (possibly
conflicting) evidence provided, generally with associated partial
degrees of belief, by several sources of differing reliability.
In using the program, each piece of evidence is entered as a
sentence (using the terms NOT, AND, OR, IMPLIES as necessary),
with an associated "degree of belief" and "weight"; followed by a
tentative conclusion. The system returns the degree(s) of belief
and weight(s) which may rationally be attached to the conclusion.

The program is written in FORTRAN (868 lines, compatible
with FORTRAN IV and with FORTRAN V). It has been used on the
IBM 360/50. The program is described in "A computer program for
fuzzy reasoning" (submitted to Fuzzy Sets and Systems; preprints
may be obtained from the author).




Tape Key:

The submitted tape is an IBM standard labelled tape
containing one file titled FLIP14. The tape is recorded
in 9-track format at a density of 1600 bpi. The IBM
utility IEBGENER can be used to punch a deck or print a
listing. Control card information would be as follows:

//SYSUT1 DD DSN=FLIP14,UNIT=TAPE,
VOL=SER=123456, LABEL=(1,SL),
DCB= (RECFM=FB,LRECL=80,BLKSIZE=2400),
DISP=0OLD

File Description: Program source deck
sequence numbers in cols 73-80,
00000100 through 00086800
868 card images blocked 30 per block
EBCDIC




FLIP: A COMPUTER PROGRAM FOR FUZZY REASONING
SUPPLEMENTARY NOTES

The purpose and operation of the program is described in "A
computer program for fuzzy reasoning” by R. Giles (to appear in
Fuzzy Sets and Systems, preprints available from the author).
These notes are intended only as a supplement to this paper.

The output of the program is normally written only to the
screen, assumed to be logieal unit #6. To obtain in addition
hardcopy of the output enter "$" and in response to the request
"Enter LP, LEV, LSIMP, LPAR, LPTS, LOOP" enter a single integer,
the logical unit number assigned to the line printer (free format).
This value is then assumed by the variable LP and duplicate WRITE
statements are invoked.

Various monitoring facilities used in development and debugging
have deliberately been left in the program. They may be invoked,
after typing "$", by entering nonzero values for the integers LEV,
LSIMP, LPAR, LPTS. This will cause the values of certain variables
and arrays to be listed (see the screen response to "$"). The
value of LOOP controls the maximum number of iterations allowed
in the linear programming routines. The default value of LOOP
is 2*DIM(DIM=ITEMS+VARS, where ITEMS = number of items of evidence,
and VARS = number of variables = total number of atomic sentences
oceurring). This value should be sufficient, but if the message,
MAXIMUM NUMBER OF ITERATIONS EXCEEDED, is received a higher value
may be tried.

Comments and queries concerning the program will be welcomed,
and I should be particularly grateful for news of practical
problems in which the program has been used, and for suggestions
for extensions in the scope of the program that would make it
more useful.

R. Giles

Mathematics Department
Queen's University

Kingston

Canada August 2, 1979.




A COMPUTLR PROCRAM FOR FUZZY RLASONING

Robin Giles

Department of Mathematics and Statistics
Queen's University
Kingston, Ontario, Canada

Queen's Mathematical Preprint No. 1979-17




Abstract

An interactive computer program is described which
implements the procedure proposed in "A Fermal System fcor
Fuzzy Reasoning" [Fuzzy Sets and Systems, ....... ]J. The
problem in queétion is that of deciding what conclusions may
be drawn in the presence of (possibly conflicting) evidence
provided, generally with associated partial degrees of belief,
by several sources of differing reliability. In using the
program, each piece of evidence is entered as a sentence
(using the terms NOT, AND, OR, IMPLILS as necessary), with an
associated "degree of belief" and "weight"; folliowed by a
tentative conclusion. The system preturns the degree(s) of
belief and weight(s) which may rationally be attached to the

conclusion.




A COMPUTER PROGRAM FOR FUZZY REASONING

1. Introduction

Classical logie allows the logical consequences of a number
of given statements to be determined. For instance, if T am
informed of the truth of the four statements A or B , A implies
C, not B, B implies D it assures me that € is true, that
nothing can be inferred regarding the truth or otherwise of D ,
and so on. However, in practice the situation is more complex:
an informant does not generally make an assertion with certainty,

but ascribes to it a certain degree of belief, usually by hedges

such as "probably", "almost certainly", "possibly", &and so on,
In sddition - and independent of this - I may consider some
informants more reliable than others, and wish to assign greater
weight to their assertions in the process of arriving at a
conclusion on the basis of the information received. A judge,
for instance, is in exactly this position when, in court, he has
to reach a verdict on the basis of the assertions of various
witnesses. In this case a further complication is often present:
the assertions offered in evidence are generally to some extent
inconsistent with each other. In such a case classical logic
fails completely: certainly, it assures the judge that the
accused is guilty, but it also assures him of his innocence - in
classical logic every statement is a logical consegquence of
inconsistent evidence! A similar situation arises in many other

fields. The chairman of a committee, for instance, faces it




whenever he wishes to formulate some weighted average of the
opinions expressed in a discussion. The same problem confronts a
doctor who has to reach a diagnosis on the basis of his own
observations together with evidence submitted by specialists in
various fields - radiology, psychiatry, biocchemistry, and so on:
or an engineer, who may receive evidence from various sources
regarding the cause of trouble in - for instance - =a
malfunctioning nuclear reactor.

In £1] a formal system was described which allows rational
conclusions to be reached in such cases, providing of course that
the necessary degrees of belief and weights have been expressed
in a suitable quantitative form. The practical implementation of
this system in the situation in question involves two stages. In
the first stage, every assertion offered in "evidence" is
expressed as a formal sentence with an associated degree of

belief and weight, and similar formal expression is given to any

tentative conclusion on which a ruling is required. There is no
reliable way of avoiding the difficulties invoelved in this
process, since it is necessary to represent formally not simply

the words used by an informant but rather the meaning behind the

words. As was shown in discussing a concrete example in [1], to
do this conscientiously may necessitate an interview with the
informant to elicit his exact meaning.

In the second stage a calculation is carried out which yields
the1 degree of belief b and weight w that may rationally be

attached to the conclusion. This calculation2 is nontrivial and
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1 In the general case several such pairs {b,w) may result.
[One may be justified in asserting a moderate degree of belief
with high reliability (large weight), or a greater degree of

belief with less reliability.]

2 An example is treated in detail in [1].

sufficiently tedious to deter a would-be user from trying out the
system in practice. FLIP (for Fuzzy Logie Interactive Program) is
a computer program which carries out all the work inveolved in this
second stage. To facilitate its use FLIP is written in standard
Fortran IV and can be used in an interactive mode on a

3

microcomputer” with a display screen terminal. No preparation of

3 It has been operated on Digital Equipment Corporation's
PDP11/v03,

the data is necessary; the sentences offered in evidence are
simply typed in, with their weights and degrees of belief, in
response to requests from the system, followed by the proposed
conclusion terminated by "?". FLIP then returns the degree(s) of
belief and weight(s) which may be ascribed to the conclusion. As
an example, I give (fig. 1) the display for the problem worked in
[1]: Granny has said that young John probably has a fever

(degree of belief .7), John says he has not (degree of belief 1},




and John's doctor says {on the phone) that if he has a fever the
odds are 4 to 1 (i.e. degree of belief .8) that he should go to
bed. The weights assigned to these assertions are 4y, 1, and 10
respectively. On receiving the query, BED? {an abbreviation for
"john should go to bed"), FLIP remarks on the inconsistency in
the evidence (there is a clash between the assertions of Granny
and John; for the numerical measure of inconsistency see Sec.2)
and then reports the weight and degree of belief that may be
assigned to the gqueried sentence. (The run of FLIP is left open.
It will be continued in Fig. 6.}

ENTER FIRST ITEM.
FEVER, BLF .7, WT 4

ENTER NEXT ITEM, OR "BYE"™ TO S3TOP,
NGT FEVER
ENTER NEXT ITEM, OR "BYE™ TC STOP.
FEVER IMPLIES BED, BLF .8, WT 10
ENTER NEXT ITEM, OR "BYE" TO STOP.
BED?
THE EVIDENCE SHOWS INCONSISTENCY OF WEIGHT 0.70 .
FOR THE SENTENCE QUERIED A DEGREE OF BELIEF 0.50
MAY BE ASSERTED WITH WEIGHT 3.00 ,
ENTER NEXT ITEM, OR "BYE" TO STOP.

Fig. 1

Since no effective use of the program can be made without
handling the first stage mentioned above I give in Sections 2 and
3 an outline of the logical system described in [1]. This is
necessary to understand (a) the way in which degrees of belief
and weights are assigned and (b) the meanings attached to the
logical connectives used in this work. More detailed information

about the program is given in Section 4,




2. The legic

The logical system on which FLIP is based depends on the
principle that any assertion is represented by a commitment. In
the case of a "simple sentence", i.e. one not containing the
logical terms "and", "or", or "implies" (but possibly containing
"not"), the commitment takes the form of a bet. The odds
offered represent the degree of belief, the stake (i.e. the sum
wagered) corresponds to the weight attached to the assertion, and
the circumstances under which the bet becomes payable are
determined by the sentence asserted. To take a simple example,
suppose my friend Bill asserts "It will probably rain today". The
sentence involved is "It will rain today", which we may denote by

the Fortran symbolic name "RAIN".‘"l The hedge, "probably",

4 Note that this sentence is such that it is possible to agree
on a procedure by which it might - albeit at some time in the
future - be tested, or, more precisely, on a procedure by which a
bet involving the sentence should be settled. The present
approach is fundamentally pragmatic in that it admits only
sentences of this type.
ihdicates an associated degree of belief, To assess it
quantitatively we need Bill's guidance, Suppose he agrees that
his use of "probably" may be interpreted as meaning that the
subjective probability he attaches to the sentence is at least

0.7 . Then we assign to RAIN a degree of belief .7 , meaning by




this that his statement is now represented by an offer to bet on
the occurrence of rain at odds of 7 to 3 (.7+(1 = .7)).

With only one assertion the assignment of weight is
arbitrary. Let us suppose, however, that my neighbour Jim also
expresses an opinion. He says, "The chance of rain today is at
least 40%". (He is an amateur meteorologist!) 1In view of its
precision we can record his assertion at once: "RAIN, BLF 4w,
Weights are used to represent the relative reliability of the two
informants. Suppose that, in view of Jim's special interests, we
decide to assign a weight of 2 to his assertion, and 1 to Bill's,
[The principle used here is that (in a given context) a speaker
should be assigned weight n if an assertion of his is
considered as being neither more nor less significant than the
receiving of n similar assertions from n independent speskers
of weight 1.] Jim's assertion may now be fed to FLIP as "RAIN,
BLF .4, WT 2", and Bill's as "RAIN, BLF .7". (The default values
of WT and BLF are 1.)

Insofar as the logie is concerned the significance of the
wejghts lies in the way the assertions are represented as bets:
Jim's assertion is represented as an offer to bet (up to) $2,
while the upper limit on Bill's stake is only $1. As we shall
see, this distinction has the desired effect of attaching twice
as much importance to Jim's assertion.

For computational purposes we can represent Jim's assertion
by its risk function. This is a function f , defined on the
interval [0,1], such that f(x) 1is the average value of the gain

1 might make (in virtue of Jim's bet) if I knew that the
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probability of rain was 1-x . Thus here f(x) = max{0,2(.4-x)1}.
Indeed, if x > .6 then the probability of rain is less than .4
so it pays me to accept Jim's bet - I make an average net gain of
$2(x-.6) , while if x < .6 I would not accept it, 8o my gain
would be zero. The function f 1is called a risk fumction since
f(x) , the risk value of Jim's assertion, represents (my
estimate of) the risk incurred by Jim in offering the bet. [It
is technically more convenient to take (as here) x as the
probability of not-rain rather than as the probability of rain:
x itself is then just the risk value of the simple sentence
RAIN .}
Similarly, Bill's assertion is represeﬁted by the risk
function g(x) = max{0,x-.3}
The net value to me of the two assertions is now given by
e(x) = f(x) + g(x), which is graphed as the solid line in fig. 2;

we call e the risk function of the evidence,.

l
—
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Now, from this evidence, what can I safely conclude about
rain? A reasonable way of answering this question is to describe
what assertions about rain I can safely make. For example, I
can safely assert "RAIN, BLF .5, WT 2": in fact, the graph of
the risk function for this assertion (dotted 1line in fig. 2) lies
below the solid line, which shows that my "income" from the
evidence will, whatever the value of x , cover my "expenditure"
in fulfilling the commitment represented by this assertion.5

5 It might be doubted whether this argument is really valid: it
only shows that I am financially safe provided I know the
"actual" probability x , but in practice I cannot know this. In
a forthcoming paper it will be shown that, providing the risk
functions involved are "convex" (which means that their graphs
(cf. fig. 1) are convex down), the conclusion of the argument is
nevertheless valid: I can safely make an assertion iff the graph
of its risk functien lies below that of the evidence.

Fach line that lies below the graph ABC of e{x) (and intersects
AD) represents in this way a safe assertion. Among these

assertions are two "maximal" ones, corresponding to the lines AB

and BC: namely, the assertions "RAIN, BLF .7, WT 1" and "RAIN,

BLF .5, WT 3". These are represented by the points P,Q in fig.

3, and it is not difficult to show that the points representing

the other "safe" assertions exactly fill the (shaded) convex

region overlying the lines 0Q, QP. Thus to know all that can be said

about RAIN it is enough to know the two maximal assertions; this
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information, as we shall see shortly, is provided by FLIP. It
should be noted that, although there are lots of "safe"
assertions, all these assertions are safe only in the sens- that
the potential gain arising from the bets offered in evidence 1is
sufficient to cover the risk incurred in uttering any one of
them. A safe assertion is not one that involves no risk, but one
for which the risk is covered by the expected gain arising from
the evidence.

In the above example, the two informants were in agreement
that rain was possible. To see what happens in the case of
conflicting evidence let us suppose that Bill's wife Joan now
asserts "It is not going to rain". If her assertion is assigned
weight 1 it can be recorded simply as "NOT RAIN" and has the risk
function h(x) = 1-x . Adding it to the previous evidence we now
get for the risk function e(x) of the total evidence the graph

in fig. 4.

A

Z
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Fig. & Fig. 5
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The confliet between the speakers is now apparent: no value
of x 1is compatible with all three assertions; someone is bound
to lose. In fact, whatever the value of x , I have {in virtue of
the three bets) an expected gain of at least $.7:6 we call .7 the

inconsistency of the evidence.

6 If I know the value of x I can by suitable betting, ensure

an expected gain of at least $.7. 1In fact it can be shown that,

in the case of a convex function e , I can even without this

knowledge bet in such a way as to ensure an expected gain of $.7.

This is true not only in this particular example but in general.
What conclusion can be drawn in the case of conflieting

evidence? If we take the same approach as before and look for

assertions which can (in the presence of the evidence) be made

with no net loss the answer is not very satisfactory. For

example, any assertion with a weight of .7 is allowed - even one

totally unrelated to the evidence., This is reminiscent of the

situation in c¢lassical logic that from a contradiction anything

follows. It was suggested in {1] that a more satisfactory procedure

is to admit as a reasonable inference from the evidence any

assertion which can safely be made after renouncing any gain from
the evidence which is guaranteed in virtue of its inconsistency:
i.e. one uses the same method as before after subtracting the
inconsistency from the risk function for the evidence - in effect,
contradictory pieces of evidence are allowed to cancel out, and

only the balance of evidence after this has been done is used as a
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basis for conclusions. The procedure is somewhat ad hoc, but it
has at least the virtue that the resulting "regsonable inferences"
are now mutually consistent.

As an example, in the present case the risk function of the
evidence is first reduced by .7 giving the graph shown in fig.
5. Then the safe assertions are determined. For RAIN there is
only one maximal assertion, RAIN, BLF .4, WT 2 , given by the
line C'D'. (This of course is a reflection of Jim's evidence,
Bill's assertion now having been neutralized by Joan's.) But
theré is also a maximal assertion for NOT RAIN, corresponding to

the line A'B': namely, NOT RAIN, BLF .3, WT 1 .7

7 At first sight it might seem that these two assertions were
inconsistent, since one asserts RAIN and the other NOT RAIN. But
this is not so: the first effectively asserts that the
probability of rain is > .4 and the second that it is < .7 .

Fig. 6 shows how these results are obtained using FLIP,
Starting with the situation at the end of fig. 1, CLEAR 1is
first typed, resulting in the erasing of the variables FEVER
and BED and of the data concerning them. Then Jim's and Bill's
evidence is entered and "RAIN?" elicits the two maximal
consequences given earlier. Next Joan's assertion is entered
(Jim's and Bill's are still in store) after which "RAIN?T
produces the single outcome BLF .4, WT 2 , and "NOT RAIN?Z"

yields BLF .3, WT 1 .
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CLEAR
ENTER FIRST ITEM.
RAIN, BLF .4, WT 2
ENTER NEXT ITEM, OR "BYE"™ TO STOP.
RAIN, BLF .7
ENTER NEXT ITEM, OR "BYE"™ TO STOP.
RAIN?
THE EVIDENCE IS CONSISTENT.
FOR THE SENTENCE QUERIED ANY ONE OF THE FOLLOWING ASSERTIONS
MAY BE MADE:
(1) A DEGREE OF BELIEF 0.70 MAY BE ASSERTED WITH WEIGHT 1.00
(2) A DEGREE OF BELIEF 0.50 MAY BE ASSERTED WITH WEIGHT 3.00
ENTER NEXT ITEM, OR "BYE" TO STOP,
NOT RAIN
ENTER NEXT ITEM, OR "BYE" TO STOP,
RAIN?
THE EVIDENCE SHOWS INCONSISTENCY OF WEIGHT 0.70
FOR THE SENTENCE QUERIED A DEGREE OF BELIEF 0,40
MAY BE ASSERTED WITH WEIGHT 2.00
ENTER NEXT ITEM, OR "BYE" TO STOP.
NOT RAIN?
FOR THE SENTENCE QUERIED A DEGREE OF BELIEF 0.30
MAY BE ASSERTED WITH WEIGHT 1.00
ENTER NEXT ITEM, OR "“BYE"™ TO STOP.
BYE

Fig. 6

3. Compound sentences

It should now be clear how the computer interprets simple

sentences, i.e. those that contain no logical terms except perhaps

"not", and the significance it attaches to degree of belief and

to weight: every sentences is represented by some commitment,
which for a simple sentence is simply a bet. Now take a sentence
of the form A IMPLIES B , where A and B are simple sentences.
This is interpreted as an offer (commitment) by the speaker to bet
$1 on B vprovided his opponent will bet $1 on A . As before, we
can represent this commitment by a risk function f , but now it

is a function of two variables. 1In fact, suppose x and y are
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the risk values (= subjective probabilities of failure) I ascribe
to A and B . Then I would accept the speaker's offer if
x <y , since in this case I would expect to gain on average $y
and lose only $x , a net gain of $(y-x) ; on the other hand, if
X > ¥ I would not accept the offer., Thus my expected gain is
f(x,y) - max{0,y-x} , which gives the appropriate risk function.
In practice one may wish to express a certain degree of
belief in ™ A IMPLIES B ". The clue to how this is done is given
by the case of a simple sentence. For me to assert ™ A , BLF .8"
is equivalent to saying that I would assert A if you paid me
$.2, for the risk function is in each case max{0,x-.2}, So we
interpret the assertion, A IMPLIES B , BLF .8 as meaning that
the speaker would assert A IMPLIES B 1if paid $.2; its risk
function is therefore max{0,max{0,y-x}-.2} = max{0,y-x-.2} . (A
speaker who asserts it expresses a belief that the probability of
B's failing is at most .2 greater than fhat of A's failing.)
Degrees of belief for other compound sentences are dealt with in
the same way: if P 1is any sentence, with risk value v , then
the risk value of P, BLF b (with 0 < b £ 1) is max{0,v-(1-b)}.
An assertion may also be gualified by an expression of the
form "WT w" (w > Q). As indicated in Section 2, this
modification is dealt with by FLIP by simply multiplying the
computed risk funection by w , the change being always effected
after any value of BLF has been incorporated.
In Section 2 there was one "risgk variable" (x), and in this
section we have used two {(x,y): FLIF is designed to handle up to

10, and can easily be modified to deal with a larger number. In
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the case of a problem with n risk variables Xaveess X each
risk function will be regarded as a function of the n-tuple
(x1....,xn) . thus having the domain [0,1]n (although in
practice risk functions will rarely depend on more than 2 or 3 of
the x's),

The risk functions which have arisen in this section and in
the last have all been of the form

(1) f = max{O,f1},
where f‘1 is a (inhomogeneous) linear function of the risk

variables. In fact, FLIP is designed to treat only sentences of

the type (1) - let us call them sentences of simple max type,

avoiding the much more complicated forms - involving both the
operations max and min and an arbitrary number of linear
functions f1""’fn - which arise in the general case. The
reasons for this restriction (which as we shall see is not as
serious as it seems) are as follows.

First, as explained in [1], the mathematical problem of
drawing conclusions from pieces of evidence rapidly becomes
intractible in the general case, but reduces to a problem in

linear programming if max operators only are admitted. This means

allowing only sentences whose risk functions are of general max

type: i.e. of the form f = max{f1,...,fn} , where f1""'fn are
linear. It would be quite practicable to write a program which
deals with risk functions of this form, but it is certainly
easier - and as it turns out still quite adequate - to treat only

the simpler form (1). The risk function f can then be stored

as the vector of coefficients of the single linear form f1 (let
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us call this a risk vector), Since we shall normally be dealing

with this case we shall abbreviate "simple max type" to "max
type" from now on.

With these thoughts in mind let us consider the
interpretation of AND and OR , Ever since the original work
of Lukasiewicz,‘it has been customary to represent these
conninectives by the operations max and min on truth values {(or,
equivalently, min and max on risk values); certainly, this is
almost always done in current work in fuzzy set theory. This
procedure would conflict with the above policy; however, there

are other forms for these connectives, called bold conjunction

and bold disjunction in [1], which have the same classical limits

(1] fig. 2) and are in fact (see especially [1] Sec. 10) more
appropriate in this bet-theoretic context, We shall adopt these
as the interpretations of AND and OR . To bhe specific, this
means the following: ™ A OR B " is first taken as a synonym for
either of the equivalent8 sentences, " (NOT A) IMPLIES B " and

8 These are equivalent not merely in the classiecal but also in
the bét-theoretic sense! i.e, they have the same risk funection and

represent the same commitment.

" (NOT B) IMPLIES A " (the intuitive acceptability of this
definition is obvious) and then ™ A AND B " is defined to mean
"NOT ({NOT A) OR (NOT B))". With these definitions we get, for the
risk values of A OR B and A AND B |, max{0,1-x-y} and

min{1,x+y} , respectively. Of course, A AND B is not of max




type; it is rather of (simple) min type, by which we shall mean
that its risk function has the form
(2) f = min{1.f1} ,
where f1 is a (inhomogeneous) linear function of the risk
variables.,
We have obtained expressions giving the risk values of
A ITMPLIES B, A OR B , and A AND B , in terms of the risk
values x and y of simple sentences A and B ; it is clear
too that the risk value of NOT A is 1-x ., These same
expressions are now taken to apply also when A and B are
arbitrary sentences. (This procedure can be justified by a
dialﬁgue interpretation of the logical connectives. BSee for
instance [1].) With these definitions every sentence becomes
represented by a risk function. For example, take the sentence
{A AND B) IMPLIES € , which we will denote briefly as P ., 1If
A,B,C have risk values x,y,2z then A AND B has risk value
min{1,x+y} so that the risk value of P is max{0,z-min{1,x+y}!}
= max{0,max{z-1,z~x-y}} = max{0,z-x-y} .
Note that P is a sentence of max type. The existence of a
large class of sentences of max type is given by the following
resulf. which comes immediately from the form of the expressions

for the risk functions associated with IMPLIES, OR, AND, and NOT:

Theorem.
(1) Every simple sentence is of both max and min types.
(2) If sentences P and Q are of max type and R and 3

are of min type then:




(a) PORQ , NOT R , and R IMPLIES P are of max type, and

(b) R AND S and NOT P are of min type.

Many (but not all) sentences of max type can be seen to be so
by means of this theorem. We shall call such sentences

admissible sentences; only these sentences are accepted by

FLIP, others being rejected with the comment "SYNTAX ERROR" and an
indication of the nature of the error. The following are some of
the admissible sentences that contain at most three occurrences of
simple sentences. [A, B, C denote simple sentences, which need
not be distinet. Remember that any or all of &, B, C may

contain "NOT" .]

A
A ORB = (NOT A) IMPLIES B = (NOT B) IMPLIES A
A IMPLIES B = B OR (NOT A)
NOT (A AND B) = (NOT A) OR (NOT B) = A IMPLIES NOT B =
B IMPLIES NOT A
A OR B OR C
(A AND B) IMPLIES C = C OR NOT(A AND B) =
A IMPLIES (B IMPLIES C) = € OR (NOT A) OR (NOT B)
A IMPLIES (B OR C) = B OR C OR NOT A
A IMPLIES NOT{(B AND C) = NOT (A AND B AND C) =
(NOT A) OR (NOT B) OR (NOT C)
Forms connected by "=" are equivalent: i.e. they

are represented by the same risk function., Other equivalent forms

17.




may be obtained by replacing an expression in parentheses by any
equivalent expression, using the above equations, the equation
NOT NOT A = A , and the fact that AND and OR are associative
and commutative (e.g. P AND Q = Q AND P and (P AND Q) AND R

P AND (Q AND R) ).

4, Practical use of FLIP

FLIP is designed to solve the problem described in Section 1.
Several pieces of evidence have been provided by a number of
informants and it is asked whether, and to what extent, a proposed
conclusion follows from this evidence.

The first step in invoking FLIP is to identify the "atomic
sentences" which oceur in the evidence. An atomic sentence is one
that contains no logical terms, not even NOT; FLIP can handle up
to 10 such sentences. Each such sentence is arbitrarily given a
name, which must be a "Fertran symbolic name" {(a string of letters
and digits, starting with a letter). The name may be of any
length, but FLIP will only read the first 6 symbols., We shall
refer to these names as variables.

Next, each assertion of an informant must be expressed as a
formal sentence using only the terms NOT, AND, OR, and IMPLIES, in
addition to variables and parentheses, "(" and ")". (We have seen
examples of such sentences in Fig. 1 and Fig. 6.} The sentence
may simply be written down directly as a paraphrase of what was

said by the informant, but greater reliability will be obtained by
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considering whether the informant would be willing to accept the
commitment associated (as described in Sec. 3) with the proposed
sentence.

In any case, the sentence chosen must be admissible in the
sense explained in Section 3. 1In most cases this is no problem,
For example, if RAIN 1is a variable then both RAIN and NOT
RAIN are admissible; and if WIND is another variable then RAIN
OR WIND and RAIN IMPLIES WIND are admissible, The conjunction

WIND AND RAIN , on the other hand, is not admissible., However,
this difficulty can be avoided by instead entering WIND and

RAIN as two separate assertions. Similarly, WIND IMPLIES (COLD
OR RAIN) is admissible, and WIND IMPLIES (COLD AND RAIN) , which
is not admissible, can be replaced by the two assertions WIND
IMPLIES COLD and WIND IMPLIES RAIN ; also, (WIND AND RAIN)
IMPLIES COLD is admissible, while the inadmissible (WIND OR
RAIN) IMPLIES COLD can be replaced by the assertions WIND
IMPLIES COLD and RAIN IMPLIES COLD ; and similarly WIND OR
(RAIN AND COLD) can be replaced by the pair WIND OR RAIN and
WIND OR COLD .

Of course, in all this, OR 1is the inclusive "or": if, in
asserting SUNNY OR RAIN , one wishes to imply "and not both" it
is necessary to add, as another assertion, NOT (SUNNY AND RAIN) .

When a sentence, chosen to represent the assertion of an
informant, is fed to FLIP one has the option of qualifying it by
" BLF b "™ and/or " WT w ", where b and w are decimal numbers
with 0 < b <1 and 0 < w . [Commas may be used freely; they

are ignored by FLIP.] b denotes the degree of belief of the
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assertion: thus b = 1 denotes certainty and b = 0O denotes
complete uncertainty. The appropriate value of b may be chosen
intuitively, or - for greater reliability - one may use the fact
that $(1~b) 1is interpreted by FLIP as the sum the informant
would have to be paid before he would agree to accept the
commitment associated with the sentence asserted, this commitment
being determined in the manner described in 3ection 3. W
denotes the weight attached by the listener to the assertion, and
is allocated in the manner indicated in Section 2. Default
values of b and w are 1.

Up to 10 items of evidence may be entered in this manner.
FLIP first reads each item, identifying punctuation marks,
numbers, and words. Each word is compared with the entries in a
"dictionary" which initially contains only the logical terms and
a few commands; if a word is not listed it is assumed to be a
variable and is added to the dictionary. The variables are thus
numbered in order of their appearance. At the same time as this
is going on, a computation of the risk function is carried out,
using the recursive procedure explained in Section 3 and at the
end incorporating any assigned values of BLF and WT. This
involves the ecalculation of intermediate risk functions, each of
which is stored temporarily in the form of a "risk vector" (see
Sec. 3). The calculation is thus possible only if the
intermediate results are all of simple (max or min) type: 1i.e.
if the asserted sentence is admissible. If not, or in case of
some other error in syntax, the whole item is discarded (this

fact, and the reason for it, being indicated) and the next item
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is requested,

After the items of evidence are fed to FLIP, the
corresponding risk vectors being stored as the rows of a matrix
EVIDNZ, a tentative conclusion is entered. This is done in
exactly the same way as for an item of evidence, exXcept that no
weight or degree of belief is entered and the item is terminated
by """, {(See figs. 1 and 6 for examples.,) The corresponding risk
vector is stored by FLIP as RISK, and EVIDNZ and RISK are passed
to a subroutine which formulates and solves a linear programming
problem (see Appendix) and reports (a) the weight of inconsistency
{if any) of the evidence, and (b) the weights and degrees of
belief of the (one or more) corresponding maximal assertions.
"RISK is then discarded, but EVIDNZ is retained so that enquiry may
be made {as in fig. 6) of other tentative conclusions, either
before or after entering further items of evidence.

At any time, entry of the word "CLEAR" restores FLIP to its
initial state (annulling all previously entered items) and entering
"BYE" terminates the session.

The program consists of some 800 lines of Fortran. It is
intended to make source copies aéﬁlable to users through the

program libraries, SHARE, DECUS, and CUBE,

Appendix: Reduction to 2 linear programming problem

Suppose that there are n risk variables, KiveooaXo and

m items of evidence E1,....Em are supplied, each being an




admissible sentence., Then the risk function Fi of the ith

n

item has the form Fi(x1,....xn) = max{o,eio +j£1eijxj . (The

matrix [eij] is the array EVIDNZ , mentioned in Section 4.)

Suppose that a tentative conclusion C is mooted, which has risk

n
function max{O.cO+ ﬁ1cjxj] . We wish to know for what values of
J=

degree of belief b and weight w this conclusion may safely be
asserted. If the evidence is consistent, this amounts to asking

for what values of b and w do we have

m ' n n
I. -
i£1max{0.eio+3=1eijxj} > max{O.w(c0+j£1cij 1+b)} ,
whenever
(1) 0 <x.,<1 (0<L3]% n) .

J

Clearly the 0 on the right hand side may be ignored, so to
answer this question it suffices to solve the following problem:

Find, for each given w > 0 and with the x's

(2) restricted by (1), the minimum value , q_, of
£ max (0 3 b - wle, + 5. e,x,)
= x {0, . XL} - X .
g J_.mma e10 + j=flj 1 wic, +j£1cj j

In faect, if w = 0 then this is just the

qmin

inconsistency, INC , of the evidence, while if w > 0 then a

value of b 1is allowed exactly if q - INC > -w(1-b). (We

min
have subtracted the value of INC from the risk value of the
evidence in accordance with the procedure explained in Section

2.) Thus the maximum value of b (for a given w ) is




Prax 1 - (INC - qmin)/w .

Now, the above problem is equivalent to the following:

For each w > 0 minimize

5 ( £ e.x.)
= Ty. - wle, + c.X,
e ier'i 0 321 J3
subject to
(3) £ ( )
D T e, .x, i=1,...,m
i 2 %io ju1 1373 !
yi_>_ 0 (i=1,....,m),
and
0 < xj < 1 (3=1,...,n),

for clearly a minimum will be attained only when

n
y; = max{o,eio +j§1eijxj} (i=1,...,m) .

Finally, introducing slack variables Vi and zj this becomes:
For each w > 0 minimize
b ( Te.x)
q = , = Wwle, + e X,
=1 ¢ =133

() subject to

1 = X, . (3=1,...,n),
J+z_] J
n ) y
—eiO = jj%eijxj -y vi {(i=1,...,m),

with all x's , y's , z's , and v's nonnegative.

This is a standard problem in parametric linear programming,

w being the parameter. The method of solution is clearly
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explained (and illustrated with examples) in [2]; to help in
understanding the program, the procedure described there is
followed closely by FLIP.

First the simplex method is used to find a basic feasible
solution (bfs) which minimizes ¢q in the case w = 0 . An
initial bfs is always available: in fact, if €0 £ 0 for all

i then one may take the =z's and the v's as basic variables;
and if not we still get a bfs by choosing (for inclusion in the
basis) yi instead of A whenever €:p > 0 . Using this
basis, an array TABLO - which is a simplex tableau (in the
"compact form", [2] p. 40) for the equations (4) - is set up by
FLIP, and the usual iterative pivot procedure is employed to find
an optimal bfs S0 . Then the parametric programming procedure
of [2] pp. 131-145 is implemented. This generates a finite

The solution S is

sequence of bfs's, S, , 5, ,...,8 0

1 2 N °
optimal for w~values in an interval [0.w1] . 31 is optimal for
w in [w1,w2] , and so on, where 0 {w, {w, <oooCwpy =%
To determine the "maximal assertions" (see Seec. 3) that can be
made concerning the queried sentence it is not necessary to
record, for each bfs, the values of all variables. It is enough
to note the values of the two quantities Cq + L cjxj and I y; -
These are recorded by FLIP as XCOORD(I) and YCOORD(I) (I=1,N);
they correspond to the X and Y coordinates of the points occuring
in a generalization of the diagrams of Fig. 2 and Fig 4, It is
then a siﬁple matter (see the examples in Section 2 and also [1]

Sec. 5.6) to determine from this sequence of points the values

of BLF and WT corresponding to the "™maximal assertions" (3ec.
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2). These values are reported by FLIP; from them all the safe

assertions can be determined easily as shown in Section 2.
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