SHARE PROGRAM
LIBRARY AGENCY

HHHHHHHHHHHHH

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
5555555555555

. SHARE PROGRAM LiBRARY SUBMITTAL FORM

SPLA __ CONTROL NUMBER; o<OGL

3ot

SHARE PROGRAM LIBRARY AGENCY

Triangle Universgities Computaticn Centey
Post Office Box 12076

Research Triangis Park, North Carolins

i 27709 USA

This form shbuld be cbmpleted and submitted with tha Program package to the SHARE

Program Library Agency at the address shown above,

Standarda gnd instructicns

for submitting programs are in the "SHARE Reference Manuysl",

(1) Program Number (to be filled ip by
(2) System Type (machine).,..
{(3) Search Key.o...

’(4) Programming Systems/Languages“.”o
(5) Author's Name aud Address.,...

* 0890 2

(6) Direct Technical Inguiries tc Name & Addrese

(1f different than Author)

(7) Title of Program...,.......

SPLAY........ 3GOD—I~5'.'I.008

fReredes et basnnnss S/369, 5/379
ouuoo-.noqoooaoa-ee.uo SOL‘B?G SIMILATION—SYSTEM

0S/PL/1

HORST E. ULFERS

DCEC, Code R83¢

1869 Wiehle Avenue

Reston, Virginia 22¢9¢

SOL-370 Simulation System

- (8) Submitter's Installation Membership

Code..... DCEC

(9) Submitter's Own Program Identification and Suffix(cptional),aU2MKO.P1591.SOL370

(10) Primary Subject Codesiunnnnniiiiiininnnnnnn., 11 9

(11} Minimum System Requirements 05368/08378 (TS0 OPTIONAL)

(12) New or Revizion Code {1f revision, show prior Program Numbesr in Item 1) N
(13) Year Completed.....n.a,,..,...............n........u.a,..,n,.,.;.o 1976
(14) Date of Submitta.. 6/30/76
(15) Documentation {number of original pages submitted)...,....... 56

(16) Abstract (should contain sufficient information for a reader to determine

the value of the program),
subjects which ney serve &s a guide

Revised 4/74

Listed on the reverse slde of this form sre

for a descriptive abstract,

>

1ii

B RHET Ry s T S TMAT T R RL Brr

SHARE PROGRAM LIBRARY SUBMITTAL FORM

Subject Guide: . -
h DISCLAIMER

' o ' Triangle Universities Computation ¢
a. Purpose serves solely as the distribution agent ffptfcr,mgéfgg
b. Programming Language used Programs and does not test or maintain tham. The,

€. Version and modification level or releage %ﬁg@ﬁﬁﬁ?iufﬁem@ﬁ%hm ;{*r—écorigml form sube
: 1. -Néither TUCE n IARE

d., Field of application makes any warranty, expressed or im;;asd}—,maz[%;higg

e. Type of routine (main program, subroutine ?’?b%ﬁngmm' functicn, ar performance af-the coa.

f. Specific description of machine requiraneﬁtg ed” frograms.

ABSTRACT
The 801~370 Simulation System is a General Purpose Simulator for discrete

modeling and simulation. The source language is English like and has been

implemented as an extension to PL/1. "The system produces object code and

provides for extensive interactive post-simulation analysis.

The system is compatible with all versions of the PL/1-F, PL/1-Opt., and

PL/1 - checkout compilers and can be used in the OS/MVT and 0S/MVT-TSO environ—

ment. Lt can be operated in the batch or TSO mode.

Minimum system requirements for SOL-370, Release 1/76 are 200K of core,

250 tracks of 3330 disk or equivalent. In TSO mode minimum region is 170K.

The documentation consists of the "S0T-370 Language Reference Manual and a

User's Guide," TN 25-75, and the 'S0T.-370 Installation and Error Tracing Guide,"

TN 23-76. Both documents are available also through the Defense Docdmentation

Center (DDC).

PlReGLATMEH

Triangle Universities Computation Center (TUCC)
. ; ; ATy

ACivVES 5
programs and do2s not test or maintain them. They

are distributed essentially In the originzi form sub-
Y - Wa Gl P 2 a]

Aled Oy The adinor, fraioist Toows Hw_g;mn (RRAERTLT)
tnakes any warrenly, expreased or implied, as to the
documentation, functlen, @r periormancé of the con-
trinuted prograins,

(Please attach additional pages if TIeCeSSErY) s csss00400-TOtal pages attached

Permission to Publish
"I hereby give the SHARE Program Library Agency permission to repriant, re-
produce, and distribute this program."

(17) Signature of Submitter and Date J{J&EC-/ # J&M—é&m

(18) Siguature of Installation Addressee

wi

TECHNICAL NOTE NO, 25-75
SOL-370

LANGUAGE REFERENCE MANUAL AND USERS' GUIDE

December 1975

Prepared by:

Horst Ulfers

Approved for Publication:

ROBERT E. LYONS
Chief, Computer Systems Division

FOREWORD

The Defense Communications Engineering Center (DCEC)
Technical Notes (TN's) are published to inform interested members
ot the defense community regarding technical activities of the
Center, completed and in progress., They are intended to stimulate
thinking and encourage information exchange; but they do not
represent an approved position or policy of DCEC, and should not

be used as authoritative guidance for related planning and/or
further action.

Comments or technical inquiries concerning this document are
welcome, and should be directed to:

Director

Defense Communications Engineering Center
1860 Wiehle Avenue
Reston, Virginia, 22090

ii

IT.
ITT.

v,

TABLE OF CONTENTS

INTRODUCTION

SOL SYNTAX

SAMPLE MODELS

SOL-370/TS0O QPERATING PROCEDURES

BIBLIOGRAPHY AND REFERENCES

iii

Page

18
30

38

1. INTRODUCTION

SOL-370 1is a dialect of the SOL-simulation language as
developed by D. E. Knuth and J. L., McNeley (ref 1), The original
SOL language has been extended to accomodate algorithms essential
for the simulation of communications networks and systems.
Furthermore, SOL-370 has been implemented as an extension of the
PL/I language. This allows for a free intermixing of SOL-370 and
PL/I language statements,

SOL—-370 is an algorithmic language used to construct models
of general systems for simulation in a readable form. The model
builder describes his model in terms of PROCESSES whose number
and detail are completely arbitrary and definable within the
constraints of the language elements. A SOL model consists of a
number of statements and declarations which have a character
similar to that found in programming languages such as PL/I or
ALGOL.

The model is not built to be executed in a sequential
fashion, as ordinary programming languages reguire. Rather, the
processes are written and executed as though all were running in
parallel, Control between processes 1is maintained by the
interaction of GLOBAL ENTITIES and by control and communications
instructions within the different processes, At the initiation
of the simulation all processes are begun simultaneously,

Variables declared within a process are called LOCAL
VARIABLES. Within a given process it is possible to have several
actions occurring at once; therefore, to visualize the process,
we may think of several objects on which the action takes place,
each 1in 1its own place in the process at any given time. These
objects will be referred to as TRANSACTIONS. A set of local
variables corresponding in number +to those declared in the
process is "carried with" each transaction of that process.,
Transactions situated within one process may not refer to the
local variables of another process nor to the local variables of
another transaction in the same process.

GLOBAL ENTITIES are of four major types: GLOBAL VARIABLES,
FACILITIES, STORES, and TRUNKS. Global variables can be
referenced or changed by any transaction from any process in the
system, and the variable possesses only one value at any given
time,

IT. SOL SYNTAX

1. THE SYNTAX NOTATION

The Backus Normal Form (BNF) is used to describe the syntax
of the SOL language., The following rules explain the use of this
notation.

a, The Notation Variable

A Notation Variable is the name for a class of elements used
in a programming language. It consists of letters and hyphens and
is enclosed in "less than" and "greater than" symbols.

EXAMPLES:

<digit> This denotes the occurrence of a digit, which may
assume values of 0 through 9.

<facility name> This denotes the occurrence of a Notation
Variable of the class Facility Name.

<do statement> This denotes the occurrence of a DO
statement.

b, The Notation Constant

A Notation Constant is the literal occurrence of a string of
characters. It is represented in capital letters.

Example:

STORE This denotes the literal occurrence of the word
"STORE".

c¢. The Syntactical Unit

A Syntactical Unit 1is defined as a single variable, a
constant, or any cocllection of notation wvariables, notation
constants, and syntax language symbols. The vertical stroke "|"
separating two Syntactical Units indicates a choice, which can be
made between the two. Anything enclosed in brackets denotes an
option., The syntax within the brackets may be used or left out.

EXAMPLES:

{identifier> FIXED|FLOAT This denctes an identifier which
may have the attribute FIXED or
FLOAT,

<identifier> [(<number>)] This denotes an identifier which
may optionally be subscripted by
a number,

d., General Format

The general format of a syntax statement uses the definition
n "

symbol "::=" to define a notation variable.
EXAMPLE:

<go to statement> ::= GO TO <label>;

2. THE MODEL STRUCTURE

When coding a SO, model the format below should be followed:

<gleobal variable declarations>
{resource declarations> >GLOBAL DECLARATIONS
<table declarations>

<process declaration>
<{process statements> > FIRST PROCESS
<end statement> > MODEL

{process declaration>
{process statements> > SECOND PROCESS
<end statement>

<end statement)

First, all global declarations should be listed. The order
of the global declarations 1is arbitrary. The order in which
processes are listed should be selected carefully, since the
first process will be started first and if any values are read
for global variable initialization, this should be done in the
first process. The program should be followed by an END
statement. If not included, the system will provide this
statement.

a, Process Declaration

{process description>::=PROCESS <identifier>
[,T=<number>] |[,R=<number>];

Each process is bracketed with the process declaration and
an END statement. The two optional parameters allow the modeler
to specify the maximum number of simultaneous transactions T and
the maximum number of resources R (facilities, stores, and
trunks} encountered by any one transaction. This feature is
important in optimizing the model's core requirements,

EXAMPLE :

PROCESS SWITCH, T=100, R=4;

b. Variable Declaration

Variables are declared either at the beginning of the
program outside the processes as GLOBAL VARIABLES, or at the
beginning of each process as LOCAL VARIABLES.

<global variable declarationd>:=<variable declaration>

{variable declaration>:=INTEGER <identifier list)> :
| REAL <identifier list>;

When declared INTEGER, their internal representation will be
fixed binary; when declared REAL, floating decimal,

EXAMPLES:

INTEGER A, B, C, D;
REAL X, Y, Z;

INTEGER AR(1l6);
INTEGER BAR{0:100); %

c. Resource Declarations

= <facility declaration}>;
| <store declaration>;
| <trunk declaration>;

{resource declaration> ::

All resources must be declared ahead of the PLocess
declarations. For details see the discussion for the specific
resource,

3. IDENTIFIERS AND CONSTANTS

{letter>::=A|BICID|...|2Z

<digit>::=0[11213|...19

<number>::=<constant>| <decimal constant>

{constant>::=%{digit>*

<decimal constant>::=<constant>.<constant>

<identifier>::=<letter>[<identifier><letter> |
{letter><digit>

Identifiers are used as the names of variables, statistical
tables, stores, facilities, processes, procedures, and
statements, A specific identifier c¢an be wused for only one
purpose in a program, Constants are used to represent integer
numbers; decimal constants represent real numbers, Identifiers
must be declared before they are used elsewhere. All SOL
commands are reserved words and must not be used as identifiers,
No identifier can start with the character 'S$'.

4, EXPRESSIONS AND RELATIONS

<name>::=<identifier>|<identifier>|<expression>| %

By variable name, facility name, etc., we will mean that the
identifier in the name has appeared in a variable declaration,
facility declaration, etc., respectively.

<primary>::=<variable name>|<store name>]|
{constant>|<decimal constant)> |TIME]|
{*<expression>*) |abs(<expression>) |
DISTRIBUTION ({(a)X,(b)V,...(C)z) |
NORMAL (<expression>,<expression>) |
EXPONENTIAL(<expression>) |poisson(<expression>)
GEOMETRIC (<expression>) | RANDOM
<term>::=<primary>|<term>X<priimary>|
<term> <primary>|<term>/<primary>|
<term>MOD<pr imary>
<sum>::=<term>|+<term>|-<term>|<sum>+<term> |
<sum>-<term>
<unconditional expression)::=<sum>|<sumd:<sum>
{expression> ::= <unconditional expression> |
if <relation> THEN <expression> ELSE <expression>

The meaning of an arithmetical operations inside an
expression is identical to the meaning in PL/I.

The new elements here are "a MOD b," the positive remainder

obtained upon dividing a by b ; "MAX(@® 4e000s,e)" and
"MIN(e ,...,e)," which denote the maximum and minimum values,
respectively, of the n expressions; and there are also
notations for expressing random values, The expression

"{e ,...,e)" indicates that a random selection is made from
among the n expressions with equal probability of choosing
any expression. The expression DISTRIBUTION ((a)X,(b)Y,...(c)z))
can be used as a shorthand notation of "(e ,....,e)" as shown in
the following example.
A=(1,1,1,1,2,2,4,4,4,9 9,9): can be written as
A=DISTRIBUTION((4)1,(2 :

The expressions NORMAL (M, 8), POISSON (M), GEOMETRIC (M), and
EXPONENTIAL (M) indicate random values with special distributions
which occur frequently in applications. A random number drawn
from the normal distribution with mean M and standard deviation S
is denoted by NORMAL (M, S) and is a real (not necessarily
integer) value, A number drawn from the exponential distribution
with mean M 1is denoted by EXPONENTIAL (M) and is also of type
real, The poisson distribution signified by POISSON (M), on the
other hand, yields only integer values; the probability that
POISSON (M) = n is (e +M /n). The geometric distribution with
mean M, denoted by GEOMETRIC (M), also yields integer values,
where the probability that GEOMETRIC(M)=N-1 is 1/m(1-1/M). The

symbol RANDOM denotes a random real number between 0 and 1 having
a uniform distribution. Finally,the notation a:b denotes a random
integer between the limits a and b. The normal, exponential,
poisson, and geometric distributions are mathematically
expressible in terms of random distributions as follows:

NORMAL (M,S) = 8 * Vv =2 In{(random) * sin(2 *random) + M

EXPONENTIAL(M) = - M 1ln(random)

POISSON(M) = n if e (14M+M /2 +,..,.,+M /(n-1))
<= random < @ (14M + ... +M /n)

GEOMETRIC(M}) = (1 + 1ln(random)/ln(1-1/M)}.

(The poisson distribution should not be used for values of M
greater than 10.) As examples of the use of these distributions,
consider a population of customers coming to a market with an
average of one customer every M minutes, The distribution of
waiting time between successive arrivals is EXPONENTIAL(M). On
the other hand, if an average of M customers come in per hour,
the distribution of the actual number of customers arriving in a
given hour is POISSON(M). If an 1individual performs an
experiment repeatedly with a chance of success, I/M on each
independent trial, the number of trials needed until he first
succeeds is GEOMETRIC(M).

The special symbol "TIME" indicates the current time:;
initially, time is zero. The value of a store name is the
current number of occupants of the store,

<relational operator> ::= =] = | <= | >= | > | <

<relation primary>::= <unconditional expression>
<relational operator> <unconditional expression>|
<facility name> BUSY |<facility name> NOT BUSY |
{store name> FULL { <store name> NOT FULL |
<{store name> EMPTY | <store name)> NOT EMPTY |
pr (<expression>) | (<relation))

<relation> ::= <relation primary>|
<relation primary> | <relation primary>|
<relation primary> & <relation primary>|
“<relation primary>

These relations have obvious meanings except, for the
construction "pr(e)", which stands for a random condition that is
true with probability e. (Here e must be less than or egual to
lI)

IF PR(0.12) THEN (12% of the time)
ELSE (88% of the time).

5. FACILITIES AND ASSOCIATED COMMANDS

A FACILITY is a global element which can be controlled by
only one transaction at a time. Associated with each request for
the facility 1is a "control strength," and if a requesting
transaction has a higher strength than the transaction
controlling the facility, an interrupt will occur. Interrupts
may be nested to any depth. 1If the requesting transaction is not
of greater strength than the controlling transaction, then the
requesting transaction stops and waits for the facility until the
controlling transaction releases its control.

The following declarations and commands are associated with
facilities.

a. Facility Declaration
<facility declaration> ::= facility <facility name list);
<facility name list>::=<facility name>[,<facility name list>]
<facility name>::= <name)>[(<number>)]

Facilities are declared at the beginning of the program ahead of

the processes, Facilities may be declared as one-dimensional
arrays.
EXAMPLES: FACILITY TERMINAL;

FACILITY LINE (16};
b. S8SEIZE Statements

<seize statement>::= SEIZE <facility name>;|
SEIZE <facility name>, <expression>;

The first form is equivalent to "SEIZE <facility name>», 0."
This statement is usually rather simple, but there are situations
when complications arise., If the facility is not busy when this
statement occurs, then it becomes busy at this point and remains
busy wuntil later released by this transaction, (Note: TIf this
transaction creates another transaction, the new transaction does
not control the facility.)

The <expression> in the SEIZE statement represents the
"control strength" which is normally zero. Allowance is made,
however, for one transaction to interrupt another, E.g. the
facility 1is busy when the seize statement occurs, let €S be
the control strength with which the facility was seized and
let HS be the control strength of this seize statement. It
HS <= CS , the transaction waits until the facility 1is not
busy. If HS > CS , however, interrupt occurs. The preemnpted
transaction is handled according to the last
INTERRUPT statement executed, The transaction, A, which
had control of the facility, is stopped wherever it was
in its program, and the present transaction, B, seizes the
facility. When B releases the facility, the following occurs:

8

(1} If A was executing a wait statement when
interrupted the time of wait is 1increased by the time which
passed during the interrupt.

(2) There may be several transactions waiting but not
attempting to seize this facility. If any of these has a higher
control strength than CS, then A is interrupted again. The
transaction which interrupts is chosen by the normal rules for
deciding who obtains control of a facility upon release, as
described in the section for the RELEASE STATEMENT.

The control strength in the present implementation of SOL must be
an integer between 0 and 15. This allows interrupts to be nested
up to 15 deep.

EXAMPLES:

SEIZE TERMINAL, PRIORITY_ CLASS:
SEIZE LINE, 10;

SEIZE PUMP;

SEIZE TERMINAL, 1:10;

SEIZE LINE, EXP(15);

SETIZE LINE, A*(B-C);

¢. RELEASE Statements
{release statement>::=RELEASE <facility name>;

This statement is permitted only when the transaction is
actually controlling the facility because of a previous seizure.
When the facility 1is released, there may be several other
transactions waiting because of seize statements. In this case,
the one which gets control of the facility next is chosen by a
consideration of the following three quantities in order:

(1) Highest control strength

(2) Highest PRIORITY

(3) First to request the facility.
EXAMPLES :
RELEASE TERMINAL;

RELEASE LINE;
RELEASE PUMP;

d. Testing the Status of a Facility
{facility status> = BUSY | NOT BUSY

The status of a facility can be tested for the condition
BUSY or NOT BUSY, The facility status can be used in any
compound statement as a relation primary.

EXAMPLES:

IF TERMINAL BUSY THEN CANCEL:
IF LINE NOT BUSY THEN GO TO LOAD:
WAIT UNTIL TERMINAL NOT BUSY:

6. STORES AND ASSOCIATED COMMANDS

STORES are space-shared rather than time-shared global
elements and they are assigned a specific storage capacity. As
long as there is sufficient storage to accommodate the requesting
transaction the request for space is satisfied; otherwise, the
transaction waits for the space regarded as a store which has a
capacity of one unit only, except for the fact that no interrupt
capability is provided for stores.

The following declarations and control statements are
associated with manipulating stores:

a. STORE Declaration

{store declarationy
{store name list>
{store name>
{capacity> H

name> [{<number>)]

T
{store name>[,<store name list>]
<
<number>

STORES are declared at the beginning of the program ahead of
the processes. STORES may be declared as one-dimensional arrays.

EXAMPLES: STORE 10 STACK;
STORE 512 (CORE, BUFFER(5}):

b. ENTER Statement

<enter statement>::= ENTER <store name>; |
ENTER <store name>, <expression>:

The first form is an abbreviation for "ENTER <store name>,
1." The value of the expression, rounded to the nearest integer,
gives the number of units requested of the store. The
transaction will remain at this statement until that number of
units becomes available and until all other transactions of greater
or equal priority which have been waiting for storage space have
been serviced,

10

STORE <capacity> <store name list>;

EXAMPLES:

ENTER STACK;
ENTER CORE, 256;
ENTER CORE, BYTE * LENGTH;

¢, LEAVE Statement

{leave statement> ::= LEAVE <store name> ; |
LEAVE <store name>,<expression>;

The first form is an abbreviation for "LEAVE <store name)>,
1." This statement returns the number of units equivalent to the
value of the (rounded) expression.

EXAMPLES:

LEAVE STACK:
LEAVE CORE, 128;
LEAVE BUFFER (NODE), LENGTH;

d. Testing The Status Of A Store
<{store status> = FULL | NOT FULL | EMPTY | NOT EMPTY;
The status of a store can be tested for the following conditions
FULL, NOT FULL, EMPTY, NOT EMPTY,

In combination with other SOL or PL/I statements a variety of
compound statements may result.

EXAMPLES:

I¥ SWITCH FULL THEN WAIT PAUSE:
IF SWITCH NOT FULL THEN ENTER SWITCH:

7. TRUNKS AND ASSOCIATED COMMANDS

TRUNKS are space-shared global elements similar to STORES.
However, in contrast to stores, trunks allow for preemption. As
long as there is sufficient storage to accommodate the requesting
transaction, the request for space is satisfied without further
action, Bach transaction holding space in a trunk is assigned a
specific holding strength, which may be different from the
preemption strength. Thus, a transaction with a low preemption
strength once assigned space in a trunk can have a very high
holding strength; therefore preemption of it becomes unlikely.

11

a. TRUNK Declaration

<trunk declaration>::=TRUNK <capacity><trunk name list>;
<trunk name list>::= <trunk name>[,<trunk name list>]
<trunk name>::= <name>[(<number>)]

TRUNKS are declared at the beginning of the program ahead of
the processes, TRUNKS may be declared as one-dimensional arrays.

EXAMPLES:

TRUNK 96 SWITCH(16)
TRUNK 1000 CORE;

b. DEMAND Statement

{demand statement>::= DEMAND <trunk name>, <capacity>,
<demand strength>, <hold strength>;
{trunk name>::= <name> [(<number>)] | <name> (<variable>)

The demand statement is a request for a number of units of a
trunk. If the units requested are available in the trunk, they
are assigned to the transaction. Associated with the resource
allocation is the hold strength specified in the demand
statement.

If the required number of units are not available, then the
following takes place:

(1) The number of units needed through preemption are
calculated,

(2} The sum of the space held by other transactions at
a hold strength less than demand strength of the demanding
transaction is determined.

(3) If the total available and preemptable space is
sufficient to satisfy the demand, transactions are preempted as
required to free enough space. The demanding transaction is then
allocated the space with the associated hold strength and
continues in sequence, Note that the interrupted transactions
are handled according to the setting of the interrupt action
indicator.

(4) If there is not enough preemptable space in the
trunk, the transaction is queued up on demand strength.

EXAMPLES:

DEMAND LINK(15), TRANSM RATE, 4, 10;
DEMAND CORE (NODE), 512, A, (A + C)/B:

12

c. YIELD Statement

{yield statement> ::= YIELD <trunk name> , <capacity>,
<hold strength>;
{trunk name> ::= <name>[(<number>)] [<name> (<variable>)

The yield statement releases the specified number of units
in the trunk at the specified hold strength. If the number to be
released 1is greater than the number currently held by the
transaction at that hold strength, the simulation goes to error
terminate.

EXAMPLES: YIELD LINES(5), 400, 10;
d. CAPACITY Function
<primary>::=CAPACITY (<trunk name>, <demand strength>)

The capacity function is provided to test the status of a
trunk. The capacity function returns the number of units
available for a demand of the capacity of the specified demand
strength. ©No resources are allocated and the current state of
the trunk is not touched, This function allows the simulation to
interrogate the state of the trunk prior to attempting a demand
statement upon it,

8. TRANSACTIONS AND ASSOCIATED STATEMENTS

Transactions represent discrete elements "flowing” through
the model. They are local to a particular process and may have a
number of descriptors (local variables). For example, in a road
network simulation a transaction may represent individual
vehicles, The properties of these vehicles, such as speed,
number of passengers, fuel consumption, etc., are described by
the local variables. Each transaction has its own set of
local variables. The following statements directly control the
creation, disappearance, queuing, or transfer of transactions.

a. Creation of Transactions.

At the beginning of simulation there is one transaction
present for each process described. Each of these initial
transactions starts at time zero and 1is positioned at the
beginning of the process. More transactions may be created by
using "start statements."

<start statement>::= NEW TRANSACTION TO <label>:

This statement, when executed, creates a new transaction (whose
local variables are the same in number and value as those of the
transaction which created 1it). The new transaction hegins
executing the program at label while the original transaction
continues in seguence.

13

b, Disappearance Of Transactions
Transactions "die" when they execute a cancel statement.
<cancel statement>::=CANCEL:

An implied cancel statement is at the end of every process, so
cancel statements need not always be explicitly written.
Transactions are also cancelled when they are preempted and the
global wvariable INTERRUPT has been set to CANCEL (see discussion
of '"Interrupt').

c., Queuling Of Transactions

Whenever a transaction encounters a blocked resource such as a
full store, a busy facility or a full trunk, it automatically
enters the queue associated with this resource, Besides these
situations the following wait conditions may be programmed for:

(1) WAIT Statements
<wait statement>::=WAIT <expression>;
The expression is rounded to the nearest integer, and then
this statement advances "time" by MAX(0, <expression>, as far as
this transaction is concerned. All time delays in a simulated

process are, 1in the last analysis, specified by using wait
statements.

EXAMPLES:
WAILIT 400;
WAIT SIMULATION_TIME:
WAIT (A + B)/C;
{2} WAIT UNTIL Statements
<wait-until statement>::=WAIT UNTIL <relation>;

This causes the transaction to freeze at this point until
the <relation> becomes true {because of action by other
transactions). The relation must not inveolve expressions which
have a random value; e.g., it is not legal to write "WAIT UNTIL
pr(lo}" or "WAIT UNTIL All:4|=0," etc.

EXAMPLES:

WAIT UNTIL SWITCH EMPTY;
WAIT UNTIL TIME SIMULATION TIME;

14

d. Transfer Of Transactions
(1) GO TO Statements
<go to statement> ::= GO TO <label>;

This statement is used to transfer to another point in the
program; statements are usually executed sequentially.

(2) INTERRUPT Statement
INTERRUPT = WAIT;|CANCEL; |<label>;

INTERRUPT is a global variable which specifies the action to
be taken for a preempted transaction. Whenever the interrupt
variable has been set, the action for all subsequent preemptions
any place within the program is specified wunless the interrupt
variable is reset.

INTERRUPT = WAIT;

If the interrupted transaction is executing a WAIT statement
when interrupted, the wait time is increased by the time which
passed during the interrupt. If the interrupted transaction was
executing anything other than a WAIT, the transaction is
cancelled.

INTERRUPT = CANCEL;

The interrupted transaction is unconditionally cancelled.

(Refer to <cancel statement).

INTERRUPT = <labhel>;
The interrupted transaction is started immediately at the
statement specified by label and the transaction no longer
controls the preempted facility.

9, SPECIAL SOL STATEMENTS
a. PRIORITY Statement

If by coincidence two transactions attempt to do something
at precisely the same time, they may be in conflict: that is,
they may both want to seize a facility, to change the value
of the same global variable, or one may want to change it while
the other is using its value. Actually, in such cases of
conflict, the simulator does choose a specific order for
execution; no two things actually happen at the same instant, as
we deal more properly with infinitesimal differences of time
between the discrete units, The choice of order is Ffairly
arbitrary except when a difference of priority is specified; in
that case, the transaction with higher priority will be acted on
first. FEach transaction has a priority, which is initially zero;
priority is changed by the statement

PRIORITY = <expression>;

15

The declaration "integer PRIORITY" is implied at the
beginning of each process; i,e., PRIORITY is treated as a local
variable. 1In the present implementation of SOL, the priority
must be between 0 and 15.

b, STOP Statement
<stop statement> ::= STOP;

A stop statement causes simulation to terminate immediately,
and all transactions cease. The statistics for all stores,
tables, and facilities are output as in the output statement, as
well as the final time, the number of times each labeled
statement was referenced, and the number of transactions which
appeared in each process,

€. Transaction Input-Qutput Statements

{transaction read statement> ::= READ TO <label>;
{transaction write statement> ::= WRITE;

The read statement inputs a set of values of local variables
for a transaction of the same type as the one executing the read
statement. This set of values is used in the creation of a new
transaction which begins executing the program at the statement
mentioned. The write statement writes the current values of the
local variables of the transaction onto the unit specified and
does not cancel the ©present transaction. The output is
associated with the file named 'DISK', while the input is read
from f£ile ‘CARD'.

The tabulate statement in conjunction with the table
declaration is the vehicle for collecting data to be displayed
in histogram format,

{l) <table declaration> ::= TABLE (<MIN> BY <INC> TO <MAX>)
<table name> (<number>) ;

The table is used in conjunction with the TABULATE statement
to collect data for histographical representation. The histogram
can be specified by its dimensions, MIN, INC, MAX.

EXAMPLE: TABLE (0 BY 100 TO 1000) TIMETABLE(5) ;

16

(2) TABULATE Statements

{tabulate statement>::=TABULATE <expression> 1IN
<table name)>;

The value of the expression is recorded as a statistical
observation in the table specified.

EXAMPLES:
TABULATE TIME IN TIMETARLE;
TABULATE (STARTIME-TIME) IN DIFFTABLE;
10. COMPOUND AND CONDITIONAL STATEMENTS
Both of those statements are legal in SOL as well as in
PL/I. Because of their relative importance and frequent use,
they are listed separately.
a. Compound Statements
Several statements may be combined into one, as follows:

<{statement list>::=<statement>; [<statement list>];

<compound statement>::=begin <statement list> end;|
(<statement list>)

b. Conditional Statements
<condition>::= if <relation> then <unconditional
statement>; |

if <relation> then <unconditional statement> else
<{statement>

17

ITT. SAMPLE MODELS

This section contains a description of nine simple models,
including listings of the source language code. Most listings
are self-descriptive, However, a more detailed description has
been provided for MODEL lE,

1. MODEL 1lA: Single Server Queuing Model With ConstantAarrival
Rate

CARDS---.
v FACILITY
. INTERNAL CARD . NONBLOCKING
. CARD QUEUE TRANSMITTER «=——TRANSMISSION LINE~~-—--

PROBLEM: Punched cards are arriving at a card transmitter
station with a constant interarrival interval of 36
seconds, The transmitter ¢an handle only one card at a
time and needs 40 seconds to process one card. The
simulation is to stop after 5 minutes,

2. MODEL 1B: Single Server Queuing Model with Poisson
Distributed Arrivals.

PROBLEM: As in Model 1A, except punched cards are arriving
poisson distributed with an average arrival rate of 100
cards/minute.

3., MODEL 1C: Single Server Model with Parameterized Input.
PROBLEM: Same as in 1B except time constants are to be
replaced by variables which are to be assigned values from a data

set.

4, MODEL 1D: Single Server Queuing Model with Priority
Handling.

18

PROBLEM: Same as in 1C, except cards are assigned
priorities between 1 and 8 on a random basis, The
transmitter is to select cards from the input gueue according to
its priority strength. A message is to be printed, when card is
received.

3. MODEL 1lE: Single Server Queuing Model with Preemption.
PROBLEM: Same as in ID, except preempt levels between 1 to 4
are to be assigned randomly, The preempted messages are to be

cancelled after a message has been printed,

6. MODEL 1lF: Single Server Queuing Model with External Queue

CARDS=~-.
v
. EXTERNAL «———>. CARD » === NON-BLOCKING=-==--->
. CARD QUEUE . . TRANSMITTER . TRANSMISSION LINE

PROBLEM: Same as in 1E, except the STORE resource 'QUEUE' is
used to model a physical queue ahead of the transmitter.
This QUEUE 1is wused to monitor the queue buildup during
the simulation, since the internal queue of the facility 1is not
accessible to the user. Furthermore, a separate process
'CONTROL' is wused to read in wvariable values and control
the 1length of the simulation.

7. MODEL 1G: Network Model - 5 Nodes Fully Connected, but
Nonblocking Links.

PROBLEM: Each node is modeled as a combination of a
card transmitter as described in 1¢ and a card receiver of

a similar type. The network is fully connected and
nonblocking. The originating nodes and the terminating nodes are
picked at random, Each message is to be assigned an

identification number.
8. MODEL 1H: Network Model with Blocking Links.

PROBLEM: Same as in 1G except that blocking on links
is considered. All 1links are to have eight channels. No
alternate routing will be considered. The connecting
matrix 'CONN' provides for cross-reference between nodes
and links.

19

|
I

1 | ¢ 1 2 3 0
l

2 | 1 0 4 0 5
i

3 1 2 4 0 0 6
I

4 | 3 0 0 0 7
I

5 | o0 5 6 7 0

9. MODEL 1I: Network Model with Alternate Routing.

PROBLEM: Same as in lH. Network has the following connectivity
(Links are numbered from 1 to 7):

1
(1) eeereeinenenennennnnesss()

-2 4.

%]

. .6

e o & & o & »

St

(4)oooooo---.-..------n.---(

7
The alternate routing will be of the following type:

Each node has a primary plus two alternate next nodes to
choose from for routing a message. The selection will simply be
based on the blocking of the links., The modeler may assume that
the routing algorithm has been precoded as a function named
'ROUTE' with two arguments representing the current node and the
destination node.

{variable>= ROUTE (<orig. node>,<term. node>);

The function will return the next tandem node number of the
value '0' if blocking occurs,

20

/* MODEL1A - SINGLE SERVER QUEUING MODEL */
/* WITH UNIFORMLY DISTRIBUTED ARRIVALS */
FACILITY TRANSMITTER;
PROCESS TRANSMIT, T=10, R=1;
START: IF TIME > 3000 THEN STOP;
NEW TRANSACTION TO SEND;

WAIT 360:
GO TO START;
SEND: SEIZE TRANSMITTER;
WAIT 400;
CANCEL:
END;
/* MODELIB - SINGLE SERVER QUEUING MODEL */
S * WITH POISSON DISTRIBUTED ARRIVALS */

FACILITY TRANSMITTER;

PROCESS TRANSMIT, T=10, R=1;

START: IF TIME > 3000 THEN STOP;
WAIT EXPONENTIAL(360);
NEW TRANSACTION TO START;
SEIZE TRANSMITTER;

WAIT 400;
CANCEL;
END;
/* MODELIC - SINGLE SERVER QUEUING MODEL */
/¥ WITH PARAMETERIZED INPUT VARIABLES */

INTEGER SIMTIME, INTTIME,SERTIME;
FACILITY TRANSMITTER;
PROCESS TRANSMIT, T=10, R=1;
GET FILE(CARD) LIST(SIMTIME,INTTIME,SERTIME);
START: IF TIME > SIMTIME THEN STODP;
WAIT EXPONENTIAL(INTTIME);
NEW TRANSACTION TO START;
SEIZE TRANSMITTER;
WAIT SERTIME;

CANCEL;
ENDG;
/* MODELID - SINGLE SERVER QUEUING MODEL */
S* WITH PRIORITY HANDLING */

INTEGER SIMTIME, INTTIME,SERTIME;
FACILITY TRANSMITTER;
PROCESS TRANSMIT, T=10, R=1;
GET FILE (CARD) LIST(SIMTIME, INTTIME, SERTIME) ;
START: IF TIME > SIMTIME THEN STOP;
WAIT EXPONENTIAL(INTTIME) ;
NEW TRANSACTICON TO START;
PRTIORITY = 1:8;
PLIBEGIN;
PUT EDIT ('CARD RECEIVED AT ', TIME) (A(17) ,F(6)) SKIP;
PLIEND;
SEIZE TRANSMITTER;
WAIT SERTIME;
CANCEL;
END;

21

/* MODEL1E - SINGLE SERVER QUEUING MODEL */
/* WITH PREEMTION */
INTEGER SIMTIME, INTTIME,SERTIME;
FACILITY TRANSMITTER;
PROCESS TRANSMIT, T=10, R=1;
INTEGER STRENGTH;
GET FILE(CARD) LIST(SIMTIME,INTTIME,SERTIME):;
INTERRUPT = FINISH;
START: IF TIME > SIMTIME THEN STOP;

WAIT EXPONENTIAL(INTTIME) ;

NEW TRANSACTION TO START;

PRIORITY = 1:8;
STRENGTH = 1:4;
PL,IBEGIN;
PUT EDIT ('CARD RECEIVED AT ',TIME) (A(17) ,F(6)) SKIiPp;
PLIEND;
SEIZE TRANSMITTER,STRENGTH;
WAIT SERTIME;
CANCEL;
FINISH:
PLIBEGIN;

PUT EDIT('PREEMPTION OCCURRED AT ',TIME) (A(23),F(6)) SKIP;
PLIEND;

CANCEL;

END;

EXPLANATION TC MODEL 1E, CODE

STATEMENTS 10, 20, /* MODEL 1lE - SINGLE SERVER QUEUING MODEL*/
/* WITH PREEMPTION */

The first two statements contain explanatory text. Since it
is bracketted with /* . . , , */ it will be ignored by the
translator,

STATEMENT 30. INTEGER SIMTIME, INTTIME, SERTIME;
This statement declares the global variables SIMTIME,

INTTIME, and SERTIME. Within the model these variables will
assume the following meaning.,.

SIMTIME = Simulation time, the time after which the
simulation is to be terminated,

INTTIME = Interarrival time for transactions,

SERTIME = Server time, the time a transaction will seize a

facility until it is served.

22

STATEMENT 40. FACILITY TRANSMITTER;

This statement declares one nonsubscribed facility with the
name TRANSMITTER,

STATEMENT 50, PROCESS TRANSMIT, T=10, R=1;

This statement declares the process with the name TRANSMIT.
T=10 specifies that not more than 10 transactions will be active
at any one time during the simulation., An active transaction is
a transaction which has been created and not yet cancelled.

R=1 specifies that no transaction will use more than one
resource. During model checkout, these parameters should be kept
to a minimum to optimize core utilization,

STATEMENT 60. INTEGER STRENGTH;

This statement declares STRENGTH as a local variable within
the process.

STATEMENT 70. GET FILE(CARD) LIST(SIMTIME, INTTIME, SERTIME) ;

This statement is a PL/1 statement which has been inserted
into the SOL route to read the file named 'CARD' and assign the
first three numerical values to the global variables SIMTIME,
INTTIME, SERTIME,

STATEMENT 80. INTERRUPT = FINISH;

This statement specifies that any preempted transaction is
to be sent to Label 'FINISH'.

STATEMENT 90. START: IF TIME > SIMTIME THEN STOP;

This compound statement, identified by the 1label 'START',
tests the global variable SIMTIME against the built-in global
variable TIME. TIME is a reserved word within SOL and represents
the current time of the simulation. If TIME exceeds the value
for SIMTIME, the simulation will be terminated, as specified by
the STOP statement.

STATEMENT 100, WAIT EXPONENTIAL(INTTIME);
This statement specifies that the transaction is to be
placed into the wait gueue for the time specified by the built-

in function EXP. The EXP function will sample a value from an
exponential distribution with the average value INTTIME.

23

STATEMENT 110, NEW TRANSACTION TQ START;

This statement specifies that a new transaction with the
same local variables is to be created and to be sent to the label
'START". The original transaction will continue to run until it
encounters a wait status. Then the new transaction will start
executing,

STATEMENT 120, PRIORITY = 1:8;

This statement assigns a random integer between 1 and 8 to
the built-in 1local variable 'PRIORITY'. The local variable
PRIORITY is used by the system to resolve any conflicts between
transactions requiring the same action at the same time. 1In this
case, 1t will control the seizing of the facility TRANSMITTER by
transactions which have entered a gqueue because the facility was
busy.

STATEMENT 130, STRENGTH = 1:4;

This statement assigns an integer value between 1 and 4
to the local variable STRENGTH.

STATEMENTS 140 to 160. PLIBEGIN; PUT EDIT ('CARD RECEIVED AT',
TIME) (A(17), F(6)) SKIP; PLIEND;

These three statements represent a PL/1 block which
was inserted to send a message to the SYSPRINT file. The PL/1
PUT statement has been bracketed by PLIBEGIN and PLIEND. 1In this
way the entire PL/I block is bypassed by the translater and
the associated text inserted unaltered. §

STATEMENT 170. SEIZE TRANSMITTER, STRENGTH;
One of the following actions takes place:

a. TIf the facility TRANSMITTER is not busy, the transaction
simply seizes the facility and marks it busy. An entry is placed
into the log file,

b. If the facility is busy with a transaction of holding
strength equal or higher to the local variable STRENGTH of the
calling transaction, the <c¢alling transaction enters the wait
queue for this facility.

¢. If the facility is busy with a transaction of lower
holding strength, this transaction is preempted and sent to the
action label FINISH as specified in the INTERRUPT statement.

24

STATEMENT 180, WAIT SERTIME;

The transaction encountering this statement will enter the
wait queue for the period specified by the value of SERTIME. The
next transaction in the time queue will then start executing.
STATEMENT 190. CANCEL;

This statement will cause all resources the transaction is
using to be freed and the transaction to be deactivated.
Corresponding entries are made in the log file,

STATEMENT 200, FINISH;

This is a simple label statement that has been specified as
the action label for an interrupt.

STATEMENTS 2106 to 230. PLIBEGIN; PUT EDIT ('PREEMPTION OQCCURRED
AT',TIME) (A(23), F{(6)) SKIP; PLIEND;

These three statements represent a PL/I block, similar to
statements 140 to 160, which will cause a message to be sent to
the SYSPRINT file whenever a transaction is preempted,

STATEMENT 240. CANCEL;
This statement will deactivate the transaction.

STATEMENT 250. END;

The END statement identifies the end of the process and is
ignored by the transactions.

25

/* MODELIF - SINGLE SERVER QUEUING MODEL */
VA WITH EXTERNAL QUEUE */
INTEGER SIMTIME,INTTIME,SERTIME;
FACILITY TRANSMITTER;
STORE 1000 QUEUE;
PROCESS CONTROL,T=1,R=0;
GET FILE{CARD) LIST(SIMTIME,INTTIME,SERTIME);
WAIT SIMTIME;
STOP;
END;
PROCESS TRANSMIT, T=10, R=2;
INTEGER STRENGTH;
INTERRUPT = FINISH;
START;
WAIT EXPONENTIAL{INTTIME);
NEW TRANSACTION TO START;
PRIORITY 1:8;
STRENGTH 1:4;
PUT EDIT ('CARD RECEIVED AT ',TIME) (A(17),F(6)) SKIP;
ENTER QUEUE;
SEIZE TRANSMITTER, STRENGTH:
WAIT SERTIME;
CANCEL;
FINISH: PUT EDIT('PREEMPTION OCCURRED AT ',TIME) (A(23) ,F(6)) SKIP;
CANCEL;
END;

/* MODELIG -~ SINGLE SERVER QUEUING MODEL WITH EXTERNAL QUEUE */
INTEGER SIMTIME, INTTIME,SERTIME;
FACILITY TRANSMITTER(5) ,RECEIVER(5);
STORE 1000 SENDQUEUE(5), 1000 RECEIVEQUEUE(5);
PROCESS CONTROL, T=1, R=0;
GET FILE(CARD) LIST(SIMTIME,INTTIME,SERTIME)
WAIT SIMTIME;
STOP;
END;
PROCESS TRANSMIT, T=10, R=4;
INTEGER STRENGTH,ORIG,DEST,NUMBER;
INTERRUPT = FINISH;
NUMBER=0;
START:
WAIT EXPONENTIAL(INTTIME)
NEW TRANSACTION TO START;
NUMBER = NUMBER+1:

PRTIORITY = 1:8;

STRENGTH = 1:4;

ORIG =1 : 5;

DEST = 1 : 5;
PLIBEGIN;

PUT EDIT ('CARD ',NUMBER,' RECEIVED AT NODE ',ORIG,
' AT TIME ',TTIME) (A(5),F(4),A(18),F(2),A(9),F(6)) SKIP;
PLIEND;
ENTER SENDQUEUE (ORIG) ;

26

SEIZE TRANSMITTER(ORIG) ,STRENGTH;
ENTER RECEIVEQUEUE (DEST) ;
SEIZE RECEIVER(DEST) ,STRENGTH;
WAIT SERTIME;
CANCEL;

FINISH;

PLIBEGIN;

PUT EDIT("'CARD ',NUMBER,' PREEMPTED AT TIME ', TIME)

(A(5) ,F(4) ,A(19) ,F(6)) SKIP;

PLIEND;
CANCEL:
END;
INPUT PARAMETER LIST FOR STATISTICS. SOL.DATA(STATIN)
0,
INol .
‘NO' ;

CLASS(Z) OUTPUT OF STATISTICS STEP 'SOL{S)' FOR MODEL1G

NAME OF FACILITY TIME FRACTION OF TIME IN USE
TRANSMITTER (1) 20866 0.0958
TRANSMITTER (2) 20866 0.1114
TRANSMITTER (3) 20866 0.1534
TRANSMITTER { 4) 20866 0.1342
TRANSMITTER (5) 20866 0.2210
RECEIVER (1) 20866 0.1725
RECEIVER (2) 20866 0.1279
RECEIVER (3) 20866 0.0958
RECEIVER (4) 20866 0.1150
RECEIVER { 5) 20866 0.1725
NAME OF STORE TIME CAPCTY MAX USD TOTAL OCCP AVG UTL
SENDQUEUE (1) 20866 10600 1 2000 0.0001
SENDQUEUE (2) 20866 1000 2 2324 0.0001
SENDQUEUE (3) 20866 1000 1 3200 0.0002
SENDQUEUE (4) 20866 1000 1 2800 0.0001
SENDQUEUE (5) 20866 1000 2 4933 0.0002
RECEIVEQUEUE({ 1) 20866 1000 2 3655 0.0002
RECEIVEQUEUE(2) 20866 1000 1 2669 0.0001
RECEIVEQUEUE(3) 20866 1000 1 2000 0.0001
RECEIVEQUEUE(4) 20866 1000 1 2400 0.0001
RECEIVEQUEUE(5) 20866 1000 2 4222 0.0002

27

CLASS (Y} OUTPUT OF MODELIG

CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD

= b e e b e e b b e e bt ek e e e e e e e et

RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED

AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT

SIMULATION TERMINATED -

NODE 1 AT
NODE 3 AT
NODE 5 AT
NODE 5 AT
NODE 2 AT
NODE 4 AT
NODE 4 AT
NORDE 5 AT
NODE 4 AT
NODE 3 AT
NODE 1 AT
NODE 3 AT
NODE 3 AT
NODE 5 AT
NODE 3 AT
NODE 5 AT
NODE 5 AT
NODE 2 AT
NODE 5 AT
NODE 2 AT
NODE 3 AT
NODE 3 AT
NODE 2 AT
NODE 4 AT
NODE 2 AT
NORDE 1 AT
NODE 1 AT
NODE 4 AT
NODE 5 AT
NODE 4 AT
NODE 3 AT
NODE 4 AT
NODE 5 AT
I/0 ERROR

28

TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME

470
716
962
1051
1185
1525
2261
3501
3855
4066
4601
5137
5987
6319
6869
7065
9217
9835
9957
10104
10282
11004
11465
12102
12447
13239
14493
14932
14933
15340
15512
16097
16307

CONTENTS OF FILE SOL.DATA(GOIN): 2000, 500, 400

/* MODEL1H - 5-NODE FULLY CONNECTED NETWORK WITH BLOCKED LINKS */
INTEGER SIMTIME, INTTIME,SERTIME,NUM;

PLIBEGIN;

DCL CONN(5,5) FIXED BIN(31);

PLIEND;

FACILITY TRANSMITTER(5) ,RECEIVER(5) ;

STORE 1000 SENDQUEUE(5), 1000 RECEIVEQUEUE(5), 8 LINK(10);
PROCESS COMNTROL, T=1, R=0;

GET FILE(CARD) LIST(SIMTIME,INTTIME,SERTIME,CONN) ;

WAIT SIMTIME;

STOP;

END;

PROCESS TRANSMIT, T=50, R=5;

INTEGER STRENGTH,ORIG,DEST,NUMBER;

INTERRUPT = FINISH;

NUM=0;

START:

WAIT EXPONENTIAL(INTTIME);

NEW TRANSACTION TO START;

NUMBER,NUM = NUM+1;

PRIORITY 1:8;

STRENGTH 1:4;

ORIG =1 : 5;
RET: DEST = 1 5;

IF DEST = ORIG THEN GO TO RET;

PUT EDIT ('CARD ',NUMBER,' RECEIVED AT NODE ',ORIG,' AT TIME Yy

TIME ', TO =',DEST) (A(5),F(4),A(18),F(2),A(9),F(6) ,A(5),F(2)) SKIP;

ENTER SENDQUEUE (ORIG) ;

SEIZE TRANSMITTER(ORIG) ,STRENGTH;

ENTER LINK(CONN{ORIG,DEST));

ENTER RECEIVEQUEUE (DEST) ;

SEIZE RECEIVER(DEST) ,STRENGTH;

WAIT SERTIME;

CANCEL:;
FINISH: PUT EDIT{('CARD ',NUMBER,' PREEMPTED AT TIME ',TIME)
(A(5) F(4) ,A(19),F(6)) SKIP;
CANCEL;
END;

Input Dataset SOL.DATA(GOIN):

0000,100,500,

2
0
1
2
3
4

29

IV. BS0L-370/TSO OPERATING PROCEDURES

For background execution a number of keywords may be entered
optionally. These keywords can be used to override the standard
default parameters for job execution, These are listed for each
command in Figure Al.

The SOL Simulation System can be operated via the remote
terminal in the foreground or by remote job entry. Figure A2
illustrates the use of individual commands to execute the Jjob
steps separately or as a whole,

There are four job steps:

1. Translate
2, Compile
3. Go

4

. BStatistics Generation.

The execution of the commands directly to the left or to the
right of the box representing this step will generate the
necessary code to execute the step. The commands to the left
will initiate foreground jobs, while the commands to the right
initiate background jobs. 1In either case, positional parameters
and keywords must be passed to the command procedure. If
positional parameters are left out, the system will prompt the
user to enter the positional parameters. For foreground
execution only one parameter - the model name - must be entered;
e.go;

SOLSTAT MODELIA

For Remote Job Entry it 1is necessary to enter four
positional parameters in the following sequence:

Last name of user
Badge number of user
Task number

. Model name

= W
*

For instance:
SOLFCG MILLER 1217 8N15 MODELLA
To allow execution of several job steps in one run combined

commands have been created. Their range is 1indicated by a
bracket.

30

Whenever a command is entered, a Command List 1is executed,
This 1list either allocates the files and data sets and calls the
load modules (foreground execution), or generates the necessary
job control cards and submits the job for execution.

A special help routine is available on TS0 to inquire about
the SOL operating procedures, To invoke this rouitne enter the
command

SOLHELP

To inquire about the structure and keywords of a command
enter the following command

SOLHELP C(<command name>)

FOREGROUND REMOTE JOB ENTRY (RJE)
| SOL|DATA | - -
———————————— I I
| | I
—————————————— | |
SOLTRAN | TRANSLATOR | SOLT | |
-------------- | [
I f |
——————————— I
| SOL|PLT | SOLFTC I
——————————— |
I | |
------------ | I
SOLFCOMP | COMPILER | SOLFC I |
____________ |
| I SOLFTCGS
| SOL|LOAD | |
____________ - |
] | |
----------- | I
SOLGO] GO | SOLG i I
——————————— I |
[| I |
_______________________ 1
| SOLJLOG | | SOL]|NAMES | SOLGS i
________________________ |
| I | I
—————————————— | |
SOLSTAT or | STATISTICS | SOLS I |
SOLPLOT | PLOTS | SsOLP |]
—————————————— I |
I ! !
—————————— I !
| PRINTS | | I
| & | - -
| PLOTS | FIGURE A2.

—————————— SOL—-370 Operating Procedures
31

OPTIONAL KEYWORDS HAVE DEFAULTS WHICH ARE LISTED IN

PARENTHESIS. TABLE ENTRIES WITHOQUT DEFAULTS ARE FIXED
PARAMETERS THAT CANNOT BE CHANGED.
! SOLOC SOLFCG |
| SOLFTC SOLGS SOLFTCGS |
| sOLT SOLFC SOLG SOLFCGS |
I
[JOB CLASS | B CL({B) CL(C) CL(B) |
| REGION SIZE | 150K 150K R(250K) R(250K) |
I JOB NUMBER | NO(0) NO(0) NO({(0) NO(0) |
CPU TIME	5 5 TIME({ 5) TIME(5)
OQUTPUT	OUT(X) QUT (X) OUT (X) QUT (X)
COMPILE OPTION	- OPTION (NS) - -
COMPILE OPTIMIZE	- OPT (1} - -
GO-STEP INPUT	- - GOIN (GOIN) GOIN (GOIN)
STAT-STEP INPUT	- - STATIN (STATIN{
	STATIN) STATIN)
SOLP SOLTCCG [
l SOLS SOLTPS SOLCCG SOLTPGS	
JOB CLASS	CL(B) CL(B) CL(CQ) CL(D)y
REGION SIZE	200K 200K R{250K) R(350K)
i JOB NUMBER	NO(0) NO(0) NO (0) NO(0)
i CPU TIME	5 TIME(5) 5 TIME(30)
QUTPUT	QUT (A) A oUT (X) A [
GO-STEP INPUT	- - GOIN (GOIN) GOIN (GOIN)
[STAT-STEP INPUT	STATIN(STATIN (STATIN(
	STATIN) STATIN) STATIN)
PLOT~STEP INPUT	PLOTIN(- - -
	PLOTIN)
BLOCK	- - BL(0) - I
TAPE LIB.NUMBER	- TP(?) - TP (SCRATCH)
Figure Al, Keyword List For SOL Commands

32

TSO SAMPLE SESSION

IKJ54012A ENTER LOGON
LOGON 1315 ACCT(9X40) P (SOLLOG)
READY

kkkkdkkkkkkkkkkktk GOL-SYSTEM INITIALIZATION #**kkkhhkkhkhkkdkhkhkhhdhhkk

SOL ALLOC
k%kx %% TEMPORARY SOL DATASETS ARE BEING CREATED **kkkikkk

SOL.DATA
SOL,.PLI
S30L.LOAD
SOL .NAMES
SOL.LOG
READY
R R R E SRR EEE LT EEETE R T EEEEE MODEL CREATION Ak khkkkkhkkhkhkhthhrhkhhkhkrkbitd
READY ++++++++++ R+
EDIT SOL(MODELIC) DATA NEW + TC CREATE +
10 s eeeees FIRST LINE OF SOL CODE.... + S0L MODEL AS MEMRER +
20 cieien.. SECOND LINE OF SOL CODE... + IN TEMP. DATASET +
30 it ier e eaaasanan st errerarrsssreas + SOL.DATA +
0 ++++++++ A
140 (CARR.RET.)
SAVE
SAVED
END
READY
(R A RS EEE LS EEEEFEEESEEES] TRANSLATION STEP AL R R A E RS L EEREEFEEEEEEESEEES
SOLTRAN MODELI1C + TO TRANSLATE +
+ S50TI. SOURCE CODE +
***%* END OF FILE ON SYSIN + TO PL/1 CODE +

5
NUMBER OF INPUT CARDS: 13 NUMBER OF ERRORS: O
READY

KkK Rk XXX A KXKKKKXK KX X AREY COMPILE STEP F*hkrkkkhkhkhhhrkdrkhdhkhh ok hhkk

R B EnS
SOLFC MILLER 1315 9X40 MODELIC + TO COMPILE +
+ & LINK-EDIT +
e T
PL1/F COMPILER & LINK-EDIT OUTPUT IS CLASS (X)
JOB R1315c0 IS BEING EXECUTED

IEF4041 R1315c0 ENDED TIME=10,36,05
QUTPUT R1315¢0 CLASS(R)

33

*************************k***

* JCL OF COMPILE & LINK~EDIT STEPS WILL BE DISPLAYED* *
el R L ol R E L E TP,
READY

OUTPUT R1315c0 CLASS(X) PAUSE

* *
* COMPILE AND LINK-EDIT LISTING WILL BE DISPLAVED *
* *
* TO SAVE ENTER SAVE 'DSNAME' *

END
READY
khkkkkkkhkhkkkkkhkhhkhkhhhhkdedkhkiitx GO STEP *%*%khkkdhkhkhdhhbhhhhhkhhhdhdthhkhdhiik
SOLG MILLER 1315 9X40 MODELIC ++++++++ 4+
SIMULATION OUTPUT I CLASS(X) + TO EXECUTE +
+ MODEL +
+++++++++H+ 4

JOB R1315G0 IS BEING EXECUTED

1EF4041 R1315G0 ENDED TIME=10.44.23
READY
khkkkhhkhkhkkhkrkhd kit hkhrhdrthh STATISTICS STEP kkhhhkkkdhhdhbhkhkhkhkhkt kAt khk
++++r++
SOLSTAT MODELI1C + TO ANALYSE +
ENTER STARTTIME + SIMULATION +
0 + QUTPUT +
0 INIT TIME UNITS SUPPRESSED I
PLOT FUNCTION REQUESTED ? ("YES" or "NO™)
'YES!

PLOT FUNCTION HAS BEEN REQUESTED

ENTER TYPE AND SEQUENCE NO. OF RESOURCE

1,3

LINK IS TO BE PLOTTED

ENTER VERTICAL PARAMETERS=({MIN,INCR,MAX)

1,1,4

VERTICAL PARAMETERS: MIN= 1 INC= 1 MAX=4

ENTER HORIZONTAL PARAMETERS- (MIN,INCR,MAX)

1,1,10

HORIZONTAL PARAMETERS: MIN= 1 INC= 1 MAX= 10

MORE RESOURCES TO BE PLOTTED ? ("YES" or "NO")

INOI

ARE SNAPSHOTS REQUESTED ? ("YES" or "NO")

'YES'

ENTER TIME VALUE

5000

SNAPSHOT TIME IS 5000
**
* STATISTICS AT TIME 5000 OF SIMULATION. *
* IS DISPLAYED *
* HERE *
**

ENTER TIME VALUE

100000

34

SNAPSHOT TIME IS 100000
LR R R R T I LY

* STATISTICS FOR LAST TIME ENTRY *
* IS DISPLAYED *

* HERE *
e R T IR T

READY

kkdkdklhkhhhb kbbb dkid SOLPLOT kkkkkhkhkkkkkkhhkhkkkhhkkkkhktkkkhkx

SOLPLOT PACKNET

kkkkhkhkhhhkhrhhdrhhdthkkhdkkhkhhdbdbdbhdhhdhhdhhbrkrrhbhbihkrhrhkik

* SCL PLOT ROUTINE INVOKED *
* PRINT OUTPUT WILL BE IN DATASET *
* PLOTOUT.DATA *
* TO PRINT THIS DATASET USE THE FOLLOWING COMMAND *

* WPRT PLOTOUT.DATA <YOUR NAME> FRM(17) NOPAGENO SINGLE *
AR RKKRR KRR ARARRAKRARK AR R AR ARRR AR AR AR Ak hhhh bk k ks

ENTER START TIME FOR PLOT

0

PLOT ANALYSIS STARTING AT TIME = 0

THE FOLLOWING STORES & TRUNKS WERE MODELLED

TYPE, 1D STORE NAME SUBSCR CAPCT
1,1 CORE) 10000
1, 2 DISASSQUEUE 9 1000
1, 3 ASSQUEUE 9 1000
1, 4 SENTQURUE 9 1000
1, 5 TASKQUEUE1 9 1000
1, 6 TASKQUEUEZ 9 1000
1, 7 TASKQUEUE3 9 1000
1, 8 TASKQUEUE4 9 1000
1, 9 TASKQUEUES 9 1000
1,10 LINK 20 10

ENTER IDENTIFIER (TYPE,ID)
1,10

ENTER SUBSCRIPT (0 FOR COMPOUND PLOT)
)

ENTER VERTICAL INCREMENT VALUE FOR PLOT
1

CLEAR SCREEN AND ENTER START TIME & INCREMENT
0,20

35

LINK{005)
019-| .
018~ .
017-] .
016-| .
015-] .
014-] .
013-|
012-]
011-|
010-|
009-|
008-|
007-1
006-]
005~
004_.| k%%
003_1 N * k&
002~ . . * &
001_ [xkhkhkhkhkhhkhhkhkkRRhkttrhkhk kit
000-]
00000 00200 00400 00600 00800 01000 01200

L] L] . s e @
*« = » s & ®

L] *« & &
[T I I

* k ok
* k%
*kkk
*
kK&
*

* » a2 & @ . e o @
s & @ . o« e . s » » . . « & e

L]
[] L] L] L] - - a L] - L] -

. & s 3 & a2 s . »

*« & s

TO PRINT THIS PLOT RESPOND WITH "YES" ELSE "NO"
INOI'

TO MODIFY TIME SCALE RESPOND WITH "YES" ELSE "NO"
'YES'

CLEAR SCREEN AND ENTER START TIME & INCREMENT
600,2
LINK (005)

019-|
018-1
017-]
016-|
015~
014-]
013-|
012~
011-|
010~
009-|
008-|
007-]

-
006_! khkhkkkkkkthkkk

005~ . *kkkk .
004~ | ***kkkkhxhhhkkk
003-| .
002~ .
001-| .
000~

00600 00620 00640 00660 00680 00700 00720

a *@ = a .

" &« * a

L] . e a e

= = & @ 3 .« * 3 s »

» » - * L4 L]
. * e a « »
s = @ LI)

- - L]
khkkhhkhhkhkhhhkkhkhhrkhhhhhhkhdhkhkhth ik

« B & & ® @ ®» » a *® & & 8 s

36

TO PRINT THIS PLOT RESPOND WITH "YES" ELSE "NO"
'YES'

TO MODIFY TIME SCALE RESPOND WITH "YES" ELSE "NO"
INOI

TO CREATE OTHER PLOTS RESPOND WITH "YES" ELSE "NO"
|NO|

READY

37

V. BIBLIOGRAPHY AND REFERENCES

D, E. Knuth and J. L. McNeley, "A Formal Definition of
SOL," IEEE Transactions on Electronic Computers, EC-13
No. 5 (Aug 1964) pp 409-414

D. E. Knuth and J. L, McNeley, "SOLL - A Symbolic

Language for General Purpose Systems Simulation ,"
IEEE Transactions on Electronic Computers, IC-13,
No. 5 (Aug 1964) pp 401-408

R&D Technical Report ECOM-3085 (AD—-850159L), "MALLARD
Trafiic Simulation, Results and Analysis, Final Report,"
James A. Armstrong and Horst E, Ulfers, Feb 1969

J. Armstrong, H. Ulfers, D. Miller, H. Page, "SOLPASS -
A Simulation Oriented Language Programming an Simulation
System," Proceedings of the Third Conference on
Applications of Simulation, Dec 1969

R&D Technical Report ECOM-0043-F, "SOL Compiler Design,"
H.C. Page, D,J. Miller (Patterson & Smith Inc}, Feb 1968
Feb 1968

Horst E., Ulfers, "PACKNET - A Packet Switch Network
Simulator,” Proceedings of the 1975 ICC, June 1975

C. G. Guffee and H. E. Ulfers , "SOL-370," Proceedings

of the 1975 Summer Computer Simulation Conference,
July 1975, pp 1-11

38

TECHNICAL NOTE NO. 23-76
S0L-370

INSTALLATION AND ERROR TRACING GUIDE

AUGUST 1976

Prepared by:

0 Horst Ulfers

Approved for Publication:

ROBERT E. LYONS
Chief, Computer Systems Division

FOREWORD

The Defense Communications Engineering Center
(DCEC) Technical Notes (TN's) are published to inform
interested members of the defense community regarding
technical activities of the Center, completed and in
progress. They are intended to stimulate thinking and

encourage information exchange; but they do not
represent an approved position or policy of DCEC, and
should not be used as authoritative guidance for related

planning and/or further action.

Comments or technical inquiries concerning this
document are welcome, and should be directed to:

Director

Defense Communications Engineering Center
1860 Wiehle Avenue

Reston, Virginia, 22090

ii

IT.

IT1.

IV.

TABLE OF CONTENTS

INTRODUCTION

COMPLETION CODES

ERROR TRACING FACILITIES

1. Transactions Tracing facilities
2. The $NUMOC Option

3. The PL/1 CHECK Option

INSTALLATION PROCEDURES

1. Systems Datasets
2. Initial Tests

BIBLIOGRAPHY

iii

Page

10

10
11

14

I. INTRODUCTION

This Technical Note contains instructions for detection
and tracing of errors which occur during translation,
compilation, or execution of simulation models implemented
with the S0L-370 Simulation System. It also gives
instructions for the installation and initial testing of the
system., It is to be used as a supplement to Technical Note
No. 25-75, "S0L-370 Language Reference Manual and Users'
Guide."

Each step of the S0L-370 system has 1ts own error
detection scheme in addition to the standard IBM error
indications.

The SOL-370 translator checks each SOL source statement
for propper coding and will generate an error message, which
is either displayed at the users TSO terminal or 1listed in
the printer output. If no error has been found the
following message is produced:

NUMBER OF INPUT CARDS: <n> NUMBER OF ERRORS: 0

The translator does not check the PL/]1 statements which are
allowed to be intermixed with the SOL stements. The entire
PL/1 code is checked at compile time.

The PL/1-F, PL/l1-Checkout, or PL/1-Optimizing compiler
will produce the regular IBM error messages which refer to
particular statement or line numbers of the PL/1 code. The
3rd to 6th digits of the line number, referred to, represent
the line number of the original SOL code, which contains the
error. For a more detailed description how to invoke this
numbering option refer to section III-2.

When executing the model the S8OL-370 System monitors
the proper functioning of the model and terminates execution
whenever an error 1is detected. At this time an error
message including an completion code followed by a dump of
the important variables is produced. When operating in the
TSO mode the user may inquire about the completion code by
entering the command

SOLERROR.
A short list of all completion codes will then be displayed
(figure 1). A more detailed description of a particular
error condition is displayed by entering this command:

SOLERR O(<abend code’)

The listings produced are shown in section IT.

II. COMPLETION CCDES

One of the following completion codes 1is produced at
the completion of each simulation run., Any code other than
0000 indicates a run-time error. The error may be caused by
a user mistake or systems malfunctioning. 1In the case of a
user abend code, the error is contained in the SOL source
code and the user should carefully check the code. In the
case of a system abend code, the wuser should obtain a
listing of the SOL source code, a complete compile listing
(compile the model with OPTION(OFFSET)), and the error dump
produced by the execution of the model, and submit those
listings to BSOL Systems Maintainance for analysis. A
summary table of the completion codes is provided in Table
I.

SYSTEM ABEND CODE 0001

RELATED SOL STATEMENT - RELEASE

ERROR CONDITION - A transaction releases a facility
when other transactions are queued
up to seize the same facility. The
facility queue does not «contain a
transaction waiting on this
facility, however.

USER ACTION - Save SOL error dump and notify
Systems of error condition.

ERROR FLAGGED IN Procedure RELEAS locations 50010970
/ 50011000

SYSTEM ABEND CCDE 0Q10

RELATED SOL STATEMENT - DEMAND

ERROR CONDITION - This error condition is raised when a
transaction holding a trunk is preempted
and the system cannot find the preempted
transaction in the trunk queue.

USER ACTION ~ Save SOL error dump and notify Systems of
condition.

ERROR FLAGGED TN Procedure $CONTROL location 50001960

USER ABEND CODE 0011

RELATED SOL STATEMENT - ENTER

ERROR CONDITION - The amount of storage requested 1in an
enter statement exceeds the declared
capacity of this store,

USER ACTION - Check store name and capacity wvalue 1in
the enter statement. If ok., increase
the value in the declaration for this
store or change the amount requested in
the crresponding enter statement.

ERROR FLAGGED IN Procedure ENTER, location 50020110

USER ABEND CODE 0100

RELATED SOL Procedure - YIELD

ERROR CONDITION - The transaction executing a yield
statement has not previously demanded the
trunk it is trying to yield now or the
amount to be returned to the trunk is
larger than the transaction had taken
from the trunk.

USER ACTION ~ Check for bad trunk name or capacity
value in yield statement.

ERROR FLAGGED 1IN Procedure YIELD
Locations - 50005870 / 50005910

USER ABEND CODE (101

RELATED SOL STATEMENT - RELEASE

ERROR CONDITION - The transaction executing the release
statement has not previously seized the
facility it is trying to release now.

USER ACTION - Check for bad facility name used in the
release statement.

ERROR FLAGGED IN Procedure RELEAS
L.ocation 50010650

SYSTEM ABEND CODE 1000

RELATED SOL STATEMENTS - DEMAND, YIELD

ERROR CONDITION - A transaction has been preempted on a
trunk. However, an entry for the
transaction cannot be found in the $WU-
and SWUINFO- arrays.

USER ACTION - Save error dump and notify Systems of
error condition.

ERROR FLAGGED IN Procedure DEMAND
Locations 50005400 / 50005480
Procedure YIELD
Locations 50004630 / 50004710

USER ABEND CODE 1001

RELATED SOL STATEMENT - LEAVE

ERROR CONDITION - The transaction executing the leave
statement tries to return capacity to a
store it has not previously used, or it
tries to return more capacity units than
it has taken.

USER ACTION - Check for bad store name or capacity in
the leave statement,

ERROR FLAGGED IN Procedure LEAVE
Location 50020700

USER ABEND CODE 1010

RELATED SOL STATEMENT - NEW TRANSACTION TO

ERROR CONDITION - The execution of the NEW TRANSACTION TO
statement causes the creation of a new
transaction. This error condition is
raised when active transactions in the
model exceed the number of transactions
declared in the process declaration (T=?)

USER ACTION - Increase the value for T in the process
declaration,

ERROR FLAGGED IN Procedure S$NEWTRN
Location 50005690

RELATED

ERROR CONDITION -

USER ACTION -

ERROR FLAGGED IN

RELATED SOL

ERROR CONDITION -

USER ACTION -

ERROR FLAGGED IN

SYSTEM ABEND CODE 1011

SOL STATEMENTS - SEIZE, ENTER

On requesting a resource (facility or
store) the SACTIVE array is checked for a
prevous use of this resource. This error
condition is raised when a matching
resource has been found, but the type had
been set to zero (0) erroneously.

Save S0L error dump and notify Systems of
error condition

Procedure SUPDATE
Location 50004890

USER ABEND CODE 1101

STATEMENTS - SEIZE, ENTER, DEMAND

A request for a resource (store,
facility, or trunk) is made by a
transaction. However, the space reserved
for storage per transaction has been
exhausted.

Increase the storage availability by a
higher value for R in the process
declaration.

Procedure S$SUPDATE
Location 50005070

USER ABEND CODE 1110

RELATED SOL STATEMENT - DISTRIBUTION

ERROR CONDITION -

USER ACTION

ERROR FLAGGED IN

This error conditicn is raised when the
distribution function contains more than
100 arguments.

- Correct distribution statement

Procedure S$DISTR
Location 50007410

USER ACTION

SYSTEM ABEND CODE 1111

RELATED SOL STATEMENT - ANYPLACE

one

is detected. An additional
corresponding

the

ERROR CONDITION - This error condition is

raised whenever

of the IBM run-time error conditions

printed.

- If error is related to users'

code,

correct

the error.

with
is

message
IBM Abend code

S0OL
Refer

sSource

the error. to IBM

Table I. SUMMARY TABLE OF SOL COMPLETION CODES.
COMPL,CODE TYPE LOCATION ERROR CONDITION
0000 SYSTEM SCONTROL NO ERRORS DETECTED
0001 SYSTEM RELEAS FACILITY NOT IN $ACTIVE
0010 SYSTEM DEMAND TRUNK NOT IN $SACTIVE
0011 USER ENTER REQUESTD STORAGE TOO LARGE
0100 USER YIELD BAD TRUNK NAME,
OR NOT PREVIOQOUSLY DEMANDED
OR AMOUNT YIELDED TOO BIG
0101 USER RELEASE BAD FACILITY NAME,
OR NOT PREVIOUSLY SEIZED
0110 SYSTEM SCONTROL NO TRANSACTION IN QUEUE
0111 USER FIRST END OF FPILE ON INPUT
1000 SYSTEM DEMAND NO RECORD OF PREEMPTED
TRANSACTION IN SACTIVE
1001 SYSTEM LEAVE BAD STORE NAME,
OR NOT PREVIOQUSLY ENTERED,
OR AMOUNT RETURNED TOO BIG
1010 USER NEW TRANSACTION OVERFLOW,
TRANSAC- R IN PROCESS DECLARATION
TION TO SELECTED TOO SMALL
1011 SYSTEM SUPDATE ILLEGAL TYPE = 0
1100 ——=r——m——- NOT USED —=——m—— e
1101 USER SEIZE RESQURCE OVERFLOW,
ENTER R IN PROCESS DECLARATION
DEMAND SELECTED TOO SMALL
1110 USER DISTRI- DISTRIBUTION FUNCTION HAS
BUTION TOO MANY ARGUMENTS
1111 SYSTEM PART] SYSTEM ABEND

ITI. TRACING FACILITIES

To verify the logic of a model or to associate error
messages with line numbers in the SOL or PL/]1 source code
the SOL-370 System provides the following tracing
facilities.

1. TRANSACTION TRACING FACILITIES

In debugging the model, it may become neccessary to
trace the flow of a number of transactions through the
model. The SOL-370 system provides a special tracing
facility to accomplish this., This tracing facility provides
for a trace of up to 15 transactions and can be activated at
a specific time during simulation. Similarly it can be
deactivated.

The tracing facility must be invoked at translation
time by specifying the following comment card ahead of the
program:

/* $TRACE */

Then the SOL source code must be renumbered starting with 10
and subsequently incremented by 10. The following actions
will then take place:

a. During translation, the translator will generate a
trace call at all labels and at all transfer points to the
control module. It also generates the preprocessor statement
to incilude the 1librarian module SOLINC(TRACE) and the
associated GET statement to read the trace parameters.

b. At compile time the trace module is patched into the
program. The trace module must be contained in the SOL
library dataset allocated to file SOLINC with the member
name of TRACE.

c. During execution of the model, the program will read
first the 17 parameter values for the trace routine. These
parameters must be the first 17 wvalues in the dataset
allocated to file CARD (default allocation is
'SOL.DATA(GOIN) '). The significance of the values read is as
follows:

First wvalue: Simulation clock time at which
the trace is to be invoked.

Second wvalue: Simulation c¢loc¢k time at which
the trace is to be
deactivated.

3rd -17th wvalue: Transaction identification
numbers of the 15 transactions
to be traced. There must be
15 wvalues or commas. The
transactions are numbered in
order of arrival, starting
with one transaction each at
each process, Process one
will be activated first, When

a transaction has been
canceled, its number will be
reassigned to the next

transaction,
The trace printout is placed into the print dataset
allocated to print file PRINTER. A sample of the resulting
trace follows:

¥kkkxkkkkk TRANSACTION IDENTIFICATION NO #kkdkkkks

TIME 1 2 3 4 5 6 7 8 9 10
0 50
0 60
0 70 90
0 70 120
0 80 120

67 60 12Q

67 70 120 90

67 70 120 120

101 80 120 120

101 60 120 120 90
101 70 120 120 120
117 70 130 120 120
117 70 150 120 120

129 70 120 120
137 70 120 130
145 70 120 150

156 70 90 120 150
171 70 120 120

The numbers listed in the columns under the transaction
identfication numbers represent the last statement number
the transaction was identified with at that clock time, If
numbers repeat while the clock is advancing, the transaction
has entered a queue state, If the number is replaced by
blanks, the transaction has been canceled.

For better efficiency, the model should be recompiled
without the trace facility when the model has been debugged,

2. THE $NUMOC OPTION.

The SNUMOC option of the SOL translator, when enabled
at translation time numbers the lines of the generated PL/1
code in a fashion that allows easy cross-reference between
the generated PLI code and the original SOL socurce code the
model was coded in. This feature becomes important when the
user wants to relate the IBM run-time error messages which
are annotated with the line number of the PL/l1 code to the
corresponding SOL source statement.

To invoke the numbering option, the SOL source code of
the model must be preceded by a comment card of the
following format:

/* SNUMOC */

The source deck must then be renumbered starting with 10 for
the comment card and in subsequent increments of 10. Each
line of the generated PLI code is then numbered occording to
the following code:

ABBBBBCCC

The first digit 'A' identifies the program module.
Only modules 1 or 3 are generated from the SOL model code.
The others correspond to the SOL library modules. The
second through sixth digits 'BBBBB' correspond directly to
the line number of the SOL source code.

3. THE PL/1 CHECK OPTION.

The IBM-provided CHECK condition offers a tool for a
very detailed trace of variables and labels. To enable this
option the user may specify the translator option $CHECK in
the comment card preceding the model source code. The
translator will then generate ahead of the PL/1 code the
following preprocessor statement:

3INCLUDE SOLINC{CHECK) ;

Alternatively, the user may choose to insert this
statement into the PLI deck directly. A load module compiled
with this option will produce a trace of all important SOL
variables and labels. Every time a variable assumes a new
value, the new value and the associated statement number are
printed. These 1listings may become very long and therefore
this feature should only be used in extreme cases. In
conjunction with the regular SOL error dump, which is
automatically produced when an error occurs, this feature
gives the experienced SOL systems programmer a very
effective tool to trace a systems error.

9

Iv, INSTALLATATION PROCEDURES

1. SYSTEMS DATASETS.

The systems tape contains two partitioned datasets

S5YS52.SOLLIB
SYS2.50LCMDP

The first file "SYS2.SOLLIB" contains all PL/l source
library modules as follows:

SOLTRAN - The Translator Module
SOLSTAT - The Statistical Post-Analysis Module
SOLPLOT - The Plotting Routine Module

CHECK - Check Statement for Error Tracing
PART1 - Comm¢n Declarations

PARTZ2 - Control Module and Common Procedures
Part3 Facility Procedures

PART4 = store Procedures

PARTS - Trunk Procedures

TRACE - Trace Procedure

The second file contains the command procedures, which
allow the wuser to invoke the steps of the SOL-370 System
individually or in combination. These procedures will either
generate the proper JCL for background submission through
the RJE command or invoke the system for foreground
execution.

The systems tape can be read with the following JCL
code:

//GETTAPE JOB (MYID,R820),'MYJOB,U,MYNAME' ,MSGLEVEL=(1,1),
// NOTIFY=R1111l,MSGCLASS=Q,CLASS=A
/*SETUP JOB REQUIRES TAPE SER NO MYTAPE FOR INPUT Fhkkkxxk
//COPYPDS EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=(A,U)
//8YSUT1 DD UNIT=3330,DISP=0LD,VOL=SER=DISKO1
//DbD1l DD UNIT=3330,DISP=0LD,VOL=SER=DISK02
//T1 DD DISP=(OLD,KEEP) ,UNIT=TAPE9,
// DCB=(LRECL=80,BLKSIZE=800,RECFM=FB),VOL=SER=MYTAPE,
// LABEL=(,NL)
//SYSIN DD *
cory PDS5=5Y52.SOLLIB, FROM=TAPEY=(MYTAPE, 1) ,TO=3330=DISK01,
FROMDD=T1,CATLG
COPY PDS=SY82.SOLCMDP,FROM=TAPE9=(MYTAPE,2),TO=3330=DISK01,
FROMDD=T1,CATLG
/*

10

To implement the SOL TSO commands, all authorized
users should be allocated to the 'SYS2.SOLCMD' dataset at
LOGON time when a special procedure P(SOLLOG) is specified.
Some Command procedures contained in the dataset require
CLIST commands that are not IBM standard and may not be
available at your installation. 1In this case,the respective
procedures must be modified. The commands used are as
follows:

ALLOC, ATTR, CALL, CHANGE, FREE, GO TO, IF,
LABEL, PROC, TPRINT, and RJE.

Before the SOL-370 System can be operated, three 1load
modules must be compiled and placed into the data set named
'SYS2.SOLLOAD'. The PL/1 source code of the programs to be
compiled is contained in the data set 'SYS2.SOLLIB' as
members:

SOLTRAN
SOLSTAT
SOLPLOT

The source code of these programs is compatible with
all versions of the PL/1-F or PL/1-OPT compilers. For best
run-time efficiency, the Optimizing compiler should be used
with compile option OPT(2).

2, INITIAL TESTS.

To test the installed system, a test model has been
provided in dataset 'SYS2.SOLCMDP(TESTMOD)}' and is copied
into dataset 'SOL.DATA(TESTMOD)' during initialization. To
test the system, this model must be translated, compiled,
executed, and analyzed. To invoke these steps from a T80
terminal follow the following procedures:

1, Testing in TSO Mode.

a. To initialize the BSO0OL-370 system for foreground
execution, enter the following command:

SOL INITIALIZE

b. To execute the SOL Translator in the foreground,
enter the command:

SOLTRAN TESTMOD
c¢. To compile the model with the PL/1-Optimizing
compiler, to execute the model, and to analyze the
results, enter the following command:

SOLOCGS <YOURNAME> <YOQOURID> <YQURTASK> TESTMOD

11

d. To invoke the interactive plotting routine, enter the
following command:

SOLPLOT TESTMOD
2, Testing in the Batch Mode.

The test program may also be executed in the batech
mode, To do so, use the folloing JCL setup:

//R1591TS0 JOB (1591,T7222) ,'R2MK0,U,ULFERS' ,CLASS=C,MSGLEVEL=(1,1),
// NOTIFY=R1591,MSGCLASS=0

//TRAN EXEC PGM=SOLTRAN,REGION=150K
//TRAN.STEPLIB DD DSN=SYS2.SOLLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=(A,U)

//TSO0UT DD SYSOUT=(A,U) ,DCB=(LRECL=131,BLKSIZE=131,RECFM=F)
//0UTF1l DD UNIT=SYSDA,SPACE=(TRK, (5,5)),
// DCB= (LRECL=80,BLKSIZE=880, RECFM=FB)
//SOLTRAN DD DSN=&&SOLTRAN,DISP=(MOD,PASS) ,UNIT=SYSDA,
// SPACE=(400,(60,60)) ,DCB=(BLKSIZE=400,LRECL=80, RECFM=FB)
//SYSIN DD *

INTEGER SIMTIME, INTTIME;

STORE 10 LINK(20);

FACILITY TERMINAL(100Q):

TRUNK 20 CPU(10);

PROCESS CONTROL, T=1, R=0;

SIMTIME=10G000;

WAIT SIMTIME;

STOP;

END;

PROCESS NETWORK, T=100, R=5;

INTEGER ORIG,DEST,ROUTE, ORNODE,DENODE;
INTTIME=100;

START:

NEW TRANSACTION TO LOAD;

WAIT INTTIME;

GO TO START;

LOAD:

ORIG=1:50;

DEST=51:100;

ROUTE=1:20;

ORNODE=1:5;

DENODE=6:10;

SEIZE TERMINAL(ORIG) ;

DEMAND CPU (ORNODE) ;

WAIT 10;

ENTER LINK(ROUTE) ;

DEMAND CPU (DENODE) ;

WAIT 10:

SEIZE TERMINAL(DEST) ;

WAIT 1000;

CANCEL;

END;

12

/*

// EXEC PL1LFCLG,TIME=5,

// PARM.PL1L='M,NOATR,NS,NS52,EXTDIC,0PT=1",

// REGION,GO=300K

//PL1L.SYSPRINT DD SYSOUT=(A,U)

//PL1L,.SOLINC DD DSN=S5YS52.SOLLIB,DISP=SHR
//PL1L,.,SYSIN DD DSN=&&SOLTRAN,DISP=(OLD,DELETE)
//LKED,SYSLMOD DD DSN=R1591.SOL.LOAD (TESTMOD) ,

// DCB= {DSORG=PO,LRECL=13030,BLKSIZE=13030, RECFM=U) ,
// SPACE=(CY¥L,(1,1,10)) ,UNIT=3330,DISP={MOD,CATLG)
//LKED,SYSPRINT DD SYSOUT=(A,U)

//G0.5YSUT]1 DD DSN=R1591,S0L.LOAD(TESTMOD} ,DISP=SHR
//G0O.SYSPRINT DD SYSOQUT=(A,U)

//GO.SYSIN DD SPACE=(TRK,(1,1)),UNIT=SYSDA

//NAMEFIL DD UNIT=3330,DSN=R1591.SOL.NAMES (TESTMOD),

// DCB= (DSORG=PO,LRECL=13000,BLKSIZE=13000, RECFM=F) ,
// DISP=(MOD,CATLG) ,SPACE=(TRK, (1,2,5))

//S$LOGF pD UNIT=3330,DSN=R1591,S0L,.LOG(TESTMOD) ,

// DCB= (DSORG=P0O,LRECL=465,BLKSIZE=465, RECFM=F) ,

// DISP=(MOD,CATLG) ,SPACE=(TRK, (10,10,5))

//CARD DD *
0,10000000,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
/*

//PRINTER DD SYSQUT=(A,U)

//DISK DD SYSOUT=(A,U)

//STAT EXEC PGM=TSOSTAT,REGION=200K
//STAT,.STEPLIB DD DSN=SYS2,.SOLLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=(A,U)

//SYSIN DD *

0,

NO,

NO,

106000000,

/*

//LOG DD DSN=R1591.50L.LOG(TESTMOD) ,DISP=SHR
//NAMME DD DSN=R1591,SOL,NAMES(TESTMOD) ,DISP=SHR
/*

13

BIBLIOGRAPHY

D. E. Knuth and J. L. McNeley, "A Formal Definition of
sSOL,"” IEEE Transactions on Electronic Computers, EC-13
No. 5 (Aug 1964) pp 409-414,

D. E. Knuth and J. L. McNeley, "SOL - A Symbolic

Language for General Purpose S8Systems Simulation ,"
IEEE Transactions on Electronic Computers, ICc-13,
No. 5 (Aug 1964) pp 401-408.

R&D Technical Report ECOM-3085 (AD-850159L), "MALLARD
Traffic Simulation, Results and Analysis, Final Report,"
James A, Armstrong and Horst E. Ulfers, Feb 1969,

J. Armstrong, H. Ulfers, D. Miller, H. Page,
"SOLPASS - A Simulation Oriented Language Programming
and Simulation System," Proceedings of the Third
Conference on Applications of Simulation, Dec 1969.

R&D Technical Report ECOM-0043-F, "SOL Compiler Design,"
H.C. Page, D.J. Miller (Patterson & Smith Inc),Feb 1968.

Horst E. Ulfers, "PACKNET - A Packet Switch Network
Simulator,” Proceedings of the 1975 ICC, June 1975.

C. G. Guffee and H, E., Ulfers , "SOL-370," Proceedings
of the 1975 Summer Computer Simulation Conference,
July 1975, pp 1-11.

DCEC TN 25-75, " SOL-370 Language Reference Manual and
Users' Guide," Horst E. Ulfers, Dec 1975.

14

