SHARE PROGRAM
LIBRARY AGENCY

HHHHHHHHHHHHH

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
5555555555555

Thic form should be complels:
Frogram Library igency at :zhe address shown aobove. 3 P
submitting prcgrams ars in the "SHARE Program Libravy Standards Menua

(1)
€2)

(33

(63

92L& CONTRCL NUMBER: 7/

PFOGRA LIBRARY SHARE PROGRAM LIBRARY AGENCY

. Triangle Universities Can?ut:férh Canmer

Post Office Box 12072 >
Research Triangle Park, MNorin
277300

aad submivted with i

. ; - . - P o R
Prograa MNumber (to oe II G 1im By EPLAY, \Ee;é;3»~ TG el 0D

System Type (machine)v. iiiviinenanasannn

Search Key (tiveeiarrrsaansstrsressasens

Progriamming LENEUIES .- w.-rsssessrersesss ASSEmblar
o2 >
T,

Author's Name and 2227232ssessss0s000 o0fTWa

Direct Inquiries ¢ ¥amz and Address
(if diffarent than Auihor)

Title of ProgTam .a.-..,- .50+ Inter=-system Shared Fnaue

Submitter's Installatisn Mewmbership Codev....... LN

Subm:tter's Own Progrznm Idantification annd Suffix(Optionall...
¢

- Ea A 1
~
L R HEL B B

Trzimary Subject

Coeraring or Monitor 37ston

¥a2w or Rewvision Jodsz {1
Vaar COMPLEtad. .. o . s rrr sissnrureeasaseaseseaassssasass ss a2 0T 0

Date of SUIMDLELR s s i s s s rnnssosrssstonssssssesosnasisasiss.

Docunentation {(aumsss © inal pages submitted)......s.

ficient information for a
T.isced on the reverse side o
a2 gu a

spatrac: (should crmzzin 3aX
ide for a descripziv

tha value 2f the
subjeces walch mor

(9%]

Subject Guide:

a. Purpose

SHARE PROGRAM LIBRARY SUBMITTAL FORM

b. Programming Language used

€. Version and modification level or release numbey
d. Field of application

€. Type of routine (main program, subroutine, etc,)
£. Specific description of machine requirements

kBSTRACT
Inter-system Shared Enque, as implemented by Standard 0il Co.,

is designed to replace the reserve of a complete volumrz w

i i

an ENQ across systems for only the resources required.

e

is accomplished by ENQUING the same resource in both sSystems

via a channel to channel adapter.

R B M e AL bk TR+ eyt i

DISCLAIMER

TTARGTS URWersites - Computalion Canter (TUCC)
8orves soleiy as the dis'ritution aqent far contributed
programs acd does not fesi or moacarain shao wesy

L g S SESC RS N

@€ disinbutad esseftially in the original form sub.
mitted by the author. Meither TUCT nor SHARE, INC
Makas oryv warrariv avnra sad or imeagiod to i

Ao 3

documentation, function, or pérformance of the cor:
fributed programs,

||
1
'

|

e b

I(Please attach additional pages if necessary).........Total pages attached L

3

 Permission to Publish
"I hereby give the SHARE Program Library Agency permission to reprint, xe-

produce, and distribute this program."

(17)
(18)

Signature of Submitter and Date

b elotin

i 7

P v

Signature of Installation Addressee

4

December 16

-
-
(8]
Or

SHARE Program
Triangle Univ

tnclosed is the tars, Jocumsniation and submittal form Ffor
the Inter-Systen Shared Enguz progran. :

To the best of =y xnowledgs, my program is free of any
proprietary, secrer, or confidential informaticn’ teloncing
to any person or orranization. T have not used the work

7 or namesz of any cor-

plans, procedures, systems, programs
panies or indivifuzls,

TAPE XEY TOR VROOSSE
This is a standard labeled tave with the following format:

=g

DCEB=(RECFM=F3,L2ICL=80,BLXSIZE=1600)

izt Tiie ez diar Label
2nd File: D3SN=1PD,CTCSHING.SOURCE
3rd File Trailer Label
bth FTile: Hezde» Label
5th File: DSN=TPD.CTCSHINQ.MACRO
Eth Fille: Trailer Label
Both datasets ars in the correct "SYSTN" format for IESUIEDTE.

CTC GENERAL LOGIC FLOW

} ‘
This manual is intended to explain the basic system Togic of the

Channel-to-Channel Access Method and delineate the design objectives. 7
more detailed knowledge of the system is needed, the CSECT pre-comments for

the module of interest should be consulted.

),

Design Objectives

The basic design of the CTC Access Metnod was obtained i the following
cbjectives {in mind:

1. Capable of handling mulzipia CTC devices

2. MCS support between systems

3. Avoid master/slave relationship between processors

4. Handle multiple users on eazh CTC device
5. Mintmum of §S modifications
§

. Require as little operator intervention as possible,

Task Structure

The resulting system is composed of one controiling task and two dauchter
tasks for each CTC device that is made active. These two tasks, the
Supervisor and the Command Procassor, synchronize a1l 1/0 and allow

operator communication between processors, respectively.

In addition, the Channel End/fbncrma’ £nd Appendags and the ITC Atranzia-

Routine trap out all C7C interrupts and direct them to the CTC Supervisar,

System Work Area

Each CTC device has 2n associated wark area to ba used by the responsinis

C7C system tasks. 7This work area. cotzinad and nitializad by the carseal

[

routine, contains Z73 lists, hyfiers 2C53's, TC3 painlers and 2 Zgad, L-ioe

Table. The address of this work araz is placed in the UCS for that
Y

device,

N

Read/Write Table

The Read/Write Table is the principle control block usad by tne CTC.
contains painters to the users' READ and WRITE DECB's and to the user'
System status ECB. Through this table all 1/0 is synchronized batween

processors and the status of users in both systems is maintajned.

Adapter Logical States

Throughout the CTC documentation, CPU's will be referred to as ¥ ar Y.
In this terminology, CPU X is "this system" while CPU Y is "the other
system*. Thus, if a CTC device is operational between two systems, oz

sees himself as X and the other as Y.

In the UCB there is an indication of which system is sending data and
which is receiving. Since CPU X is always "this system”, we see +that

if the sending control indicators say X, then this system is issueing

writes and the other system is responding with its available reads. I

the UCB indicates Y, then this system is receiving and Y is sanding.
the UCB indicates idle, then neither CPU is sending and the adantsr is
idle.

€TC Command Codes

Thé channel program opcodes for tre (70 ara:
READ XXXX XX10
< PRITE XXXX XXO1
CONTROL XXXX X111 .
NOP XXXX X211 : -

It

5

on

its -

-
-
1

rs

The remainder of the bits are used by the CTC Access Msthod 5 coumunicsz
additional information to CPU Y. The nigh half-byte of sach on-cods
reflects the user id associated with this channel nrogram, Thus 2 Racd

CCWd for CTCUSERS will have an opcode of X'62°. By sensirng the adapter,

system Y can teil the operaticn to be performed and who i narioemiag Tt

The CTC system reserves the use of users G, 1 and 15 For iis21f, Thiriesn icenti-

flers remain for usars of the Access Method. A Tist of the 077 cpandes Folious:

Read by user X X'X2' , X=1-E
Write by user X X1, X=1-f
Sense X'g4!

Nakeup after an IPL X'%?‘
Wakeup without IPL X'FF!

Switch Control £'07°
(Request/Release)

Readtap for user X X'X7" , X=1-E

Close for user X A, X-1-F .
~Llose for CTC A'0f"

Control Routine

The Channel-to-Channel Control Routine is the mother task for ail activa
CTC devices. When a request is made by %he operator to stert a (7C device,
the Contral Routine validates the »-~u2st, initializes a C7C systen wore
area, and ATTACH'es a Supervisor anc Command Frocassor. [order to vzl lai:
3 start request, the Control Routine maintains a tadble of valid £70's <xr

.
each system and their associated UCB's. This table is provided in the cading
of the.CTCTL macro instruction which will exnand into tha Zonirel Roulins,

By ceding tha Zonore? v ort o saro, It can be fzilored o oe

(8]

ORI

requiraments easily. For a discussion of other Control Routine macro ootions,

see Attachment I.

- -

L) ‘ -4-

In order to monitor I/0 activity on all active C7('s, the Contrcl Routine

-~

3

issues a STIMER upon being entered for the first time. At the 2nd of =

3,

-

i

time 1nterﬂa] if no data has been transferred on a CTC device, 1t requestis

_the Command Processor to send a "protocol I/0" in order to stimulats

. adapter activity. At the end of the subsequent time interval, if %the

.protocol I/0 hasn't completed, the status of the other system is regquestac

from the aperator.

The Control Routine regains control if either the Superviser cr Command
Processor terminates. The Command Proceésor is reinstated the firsi fime
it abends. If the Supervisor abends, the CTC system is terminated far
that device. However, at the time of a second abend in the system, the

CTC is terminated for all devices.

Command Processor

The Command Processor acts as a CTC user, When posted by the Control.
Routine, it sends operator messages to the other system or schadulisas
protacol I/0. If it is posted by the Supervisor, it sends any system
status changes to the master conscle or “isnlays oserator messazes froo
the other system. The buffers used by the Command Processor are found
in the CTC work area. The MCS feature of the CTC is provided by usiag

keywords for route ccdes toc be sent acrass to 2 othar systan, Valis

L

routing codes are listed in the CTC Operator Intertace.

Supervisor

The Supervisor is the principle CTC task in that all work is rec=ivad

and processed in this module. At the time the Sure-visor Is attachad,

he must notify the CTC system in Y that he i3 available Jor work, Hs
does this by sending a "wakeup" control command. This will allew ¥ to

post all h%s users of the new status of this CTC. Work nroc2ssing than

commences, When there is no work from eitner processor, th2 Sugarvisor

%sits fdle" by waiting on an Attention and a Work ECB.

when the Work ECB is posted, the Supervisor must first "rasuash cortont’
of the adapter by sending a "switch" control command. Once in the X
logical state, he sends all work across. Work for the Supervisor <on-
sists of:

1. Sending a readtap notifying the other system of a2 R7AD

just issued by a user in this system.

2. Sending a “close" control command informing the other system

of a user closing in X.

3. Sending user data scheduled by 3 WRITE macro.

=3

v

When all work has been sent, another "switch” command is sent raleas’

s}

~
i

adapter control and returning it to id7:. As the work requesss comp)

3

o
(n

L=

the users are posted and the Read/Write Table is updated.

The READ and WRITE ECB's are postad onlv to |

in system status (e.g., other system stopnea, uzer in ¥ ¢losed) will

reflected by posting the system status EC3 for tne corressoating usas o

all users depending on the resulting status.

)

0S Modifications

1. The UCH's for the CTC devices have to be zapped to indicate the CTC

device type. This is X'40FQ',

:OS Modifications by Control Routine When Started:

1. The address of the CTC Attention routine is placed into the attentien

table and its index is placed into the UCB.

2. The CTC saves the original TIOT and uses its awn. At task termination,

1

the original TIOT is restored.

ren

PP:kl
June 1972

CTCTL - CONTROL ROUTIME MACRO

- !
The CTCTL macro will expand into a CTC Control Routine tailared to the

AL

% requested specifications. Optional generating parameters for this macro
TE include: :
, §i DF=n _Maximum number of users on a CTC device if omittad
o DF=4 is assumed.
F _
i SUPR= Module name of CTCAM Supervisor. If omitted
. SUPR=CTCAMSUP is assumed.
g CMD= Module name of CTCAM Command Processor. If omittad
3 CMO=CTCAMCMD is assumed. :
K
SYS= Code generated for either 370 or 360 CPU. ODefauit
is SYS$=370.
{
A ‘
- ATTNGF= Index into attention table for attenticn routine.
P : Default ATTN@F=8.
i PSATEF= Index into attention table for devices thaf dan'z
S have an attention routine. This index will ooint
to a BR14 instruction. At the time C7C is stocoed,
this value is placed into tha UCBATI field., The:
default value is £SA777=0.
w
'55§ SNAP=YES YES is the only permitted value. This generates
i cade to allow snaps to be taken.{see CTC Qperator
. Interface). If omitted, the snap code will not

be generated.

*CTCAMCTL
*CTCAMSUP
*CTCAMCMD
CTCOPEN
16CO20XA
*CTCROWRT
*CTCCHECK
*CTCERASE
*CTCPURGE
*CTCCHABE

*CTCATTEN

LIST OF CTC MODULES

* CSECT in CTCAMCTL Loac Module

Control Routine
Supervisor

Command Processor
Open Module

Close Module
Read/Write Rcutine
Check Routine
Erase /0 Routine
Purge RGE Routins

Channe) End/Abnérfai
End Appendage

Attention Routine

o
-

WKA

RN NI S IR I N R R

CTCSTARTY
*

DSECT
CTCAMWKA

x ¥ & * %

* k % X *

EQuU *

* % ¥ * * ¥ * & X

AUTHOR -~ PHIL PRESTON

CTCAMWKA - CTC WORK AREA

x % £ % % ¥ ¢ £ & % ¥ £ ¥ k & ¥ KR W oy x XX X

CTCAMMWEKA

THIS DSECT OESCRIBES THE CTCAM SY
8Y THE CONTRCL ROUTINE CTCAMCTL FOR EACH CTC DEVICE STARTED,

% WORK AREA CONTROL INFORMATION

*

LYCHA TN

CTCTCBAD
CTCMOTCB
CTCUCBAD
CYCLENTH

CTCSYSNO
*

. % SYSTEM

*

CTCSUPSA
CTCMDPSA
CTCOPNLS
CTCATTCH
*
CTCPGLST
*

* SYSTEM
%
CTCDCBO
CTCROLZBL
*

0s

Ds
DS
0s
0s
D5
0s

SAVE AREAS

DS
DS
EQu
EQU

18=
15

pCB's

cLs

MTITITnmHN
T S N I

CHAIN TIELN TO NEXT WORK ARPEA

3/20/72

* % % % ¥ ¥ &£ ® ¥ ¥ ¥ Xk %k * * ¥ ® & k X

THIS IS A CONFIDENTIAL AMOCO pPRODUCTION PROGRAM

TCR FOR THIS SuUos2yIsDa

CMD PRCC
UC3 ADD2S

LEMGTH 0P THIS
SYSTEM ON CGTHER SIDE CF ADAPTER

TC

!

x SUOFRVIST?

= CoMMANMD DIOCT

CTOMOPSA+L2 LSS

CTCMDPSA$20 USF

- -

ANCPS
R

[l DR

N e
3. .
Y i
PR RN

SAVE

8 = SyUPSIVISNR DCH

-
- - -

RN

TT O2EVICE

~TIEA2EA

CRaN -}
SAVE

AREA
Wil K AREA

LS WCORK AREA

CL16 *= PURGF PARM LIST FOR CYCPURGE

™ o
1R

-

% % % X

STEM ‘WORK ARAE, ONE T3 NRTATMED

& %= 2 & & Zx &F ¥

&
B

D
=

Eod
b4

-4

b

(A

[P L 1

i U

[

-t

* SYSTEM
3

RWTSTART
RWTUSERS
RWTDOMRTN
RWTWKELCSB
RWTATECB
RWTCPECH
RWTCURRE
RHTIOCNT

RWTERCNT
*

= ~% SYSTEM

=

CTCSECSBL
CTCURECE
CTCSYECB

- CTCATECH
CTCOWKECE
x
CICPECSEL
CTYCTLECH
CTCPSECB
CTCPRECSH
CTCPHECLR
*
CTCSENSE
*

READ/WRITE TABLE PREFIX

ps ©OF

Ds F

oS F .

DS F

0s F

0S F

S F

s F = COUNTER OF UESR POSTS FROM 1/0 ACCROSS ADAFR
oS F * ERROR CNTR.ADDED WHEN CHANNEL CHK OCCURS
ECB LISTS

DS OCL16 * SUPERVISOR ECH LIST

DS £ = CYURRENT [03 EC3 PLINTER

0S F *+ SUPV SYSTEM E£8 FAR CTL TO POST
DS F * ATTENTION ECB POINTER

DS F * WORK ECB PNINTER

0S OCLL6 * COMMAND PRMUCESSOR ECB LIST
DS £ = £CB FOR CTL 271N 70O 00ST

DS F * SYSTEM ECB FCR SUPY TO POSY

0S F = READ ECB

DS F % WRITE ECS

DS D * SENSE CCW

* COMMAND PROCESSOR TECB'S

x
CYCRDECH
CTCWDELS
*

* SYSTEM
*

CTCIBUF
FREE
CTCUCMID
CTCBUFLN
CTCDATA
*

CTCRDBUF
*

CTCWTBUF
®
CTCNTOBF

- - WORKLNGH
=

ns 75 = CMD PROC CGEAR NDECH

oS 7€ = €M PRNA WRLTF TSL8

BUFFERS

DS an

DS ACLTZ = MONIFY RUFEED

EQU xv80¢ = [MDICATES APyFsER EQEE €02 CNOMMAND
Ds ~e s ogQMIn T LT T T T ING CINSCOLE
0s B LENGTH TR T AR

ns CLTC & COMMAMD

DS CL72 = CMD PRCC READ BUFFER

DS CLY2 = CMD PROC WRITE BUFFER

0s CL72 = CMD pPACC WTQ BUFFER

EQu *-CTCSTARY

)

~

CTCOMRTN - CTC DATA MANAGEMENT ROUTINE POINTERS

DMRTN DSECT
CTYCOMRTN
‘ -
* THE FOLLOWING OESCRIBES THE DATA MGT POINTER AREA OF THE RWT
L .
RWTRWRTN DS
RWTCHECK DS
RWTERASE DS
RWTPURGE DS
RWTCEAP DS
RWTATTN DS

* PURGE ROUTINE ADDRESS

MMM

CTCENTRY - CTC READ WRITE TABLE

RWT DSECT
CYCENTRY

THE FOLLOWING IS THE FORMAT OF EACH USER ENTRY

* %N ®

RWTENTRY OS nF

RWTRDECE DS F

RWTWOECB DS F

%

* THE BIT VALUES OF THE HIGH BYTE OF BOTH CECB POIMTERS ARPZ
RWTICTAP EQU Xxtg9!

ARNTIOGEN EQU xvege

RWTEXCP EQU X*20°

*

RWTUSEC8 ©S F

-

RNTSTATL DS c

RNTOPENX EQU xraQ9?

RWTOPENY EQU Xrade

RWTLASTE EQU xt20°!

QWTCLOSE EQU X'10' * CLOSE [ISSUED
CTCWAKE EQU X'N4e

*

RNTSTAT2 DS C
RWTSTAT3 DS C
- .
RWTOONAM DS 0cC
RWTSTATS DS C

-ENTRYEND EQU *

ENTRYLEN EQU ENTRYENC=-QRWTENTRY

T - CTC TASK INPUT/OUTP

UT TASBLE

creTion - CTC TASK INPUT/OUTEEZ ==

T107
TIOELNGH
TI0OEODNM

TIOEFRST
TIOTFEND

DSECT .
cTcTIOT
DS X
0S 3X
0S cL8
DS F
DS e
DS F

CTCDEB - CTC DATA EXTENT BLOCK

DEB

DESNMSUR
DEBTCBAD
DEBAMLNG
DEBDEBAD
DEBOFLGS
DEBIRBAD
DEBOPATH
DEBQSCNT

DEBNMEXT
DEBUSRPG
DEBPRIDOR
DERECBAD
DEBDEBID

" DEBDCRAD

DEBEXSCL
DEBAPPAD
DEBOVMOD
DEBUCBAD
DEBENO
DEBLNTH

DSECT
CTCDEB
DS oXx
0s F
DS ox
DS F
DS 0x
DS F
DS X
DS X
DS H
D5 X
DS £
DS 0X
0s F
ns OX
DS F
DS 0x
DS F
oS 71X
0s F
EQU *
EQU oEB

€

NO~DEBNMSUB

CTCUCB - CTC UNIT CONTROL BLOCK

ucs DSECT

cTcucs
t#t#***t***ttt*###ttt*tt##t*#*#######*#**tt*tt##¢#ﬂ*t#t*t*#t#tttttgttﬁ:

*

* - — CTC UNIT CONTROL BLOCK - -

%

£ THIS DSECT DESCRIBES THE UNTT CONTROL RLOCK FNR THE CHANNEL-TO-
® CHANNEL ADAPTER.LFOR FURTHER INFNRMAT ION REGARDING THE COMMON

* SEGMENT SEE THE MVT CONTROL BLOCKS MANUAL, ‘

] z
***#**it#ttt##ttt*i#t#ttt#ttt##*#*#&##tt*tt#*ﬂ#t#tt*tt*t#tttttt1ﬂx=ﬁkt
* g
* THIS IS A CONFIDENTIAL AMOCO PRODUCTION PROGRAM -
* T
ttttt*##t*t#ttttt*t###t*#*t#ttaﬁtt*ttt#tt*z#*t#tt#t#tttutttt:zgggﬁzt:gz

UCBCOMON DS

OCL24 % COMMON SEGMENT
SRTEJBNR 05 C % INTERMAL JNAB NUMSBER ' o
SRTECHAN DS C % ALLOCATION CHANNFL MASK
-UcsI1o ns C * yUCs® IDENTIFIER
SRTYESTAT OS5 C * S$TATUS 8YTF A
yCB8CHA ns C * CHANNEL A0DNRESS
pCcaua o5 cox UNTIT ADDRESS
ucarLl D3 C = FLAG RYTE 1
UceDT1) C = [NCFX TC DEVICE TABLE
UCBRET! DS C %= FRROR 3TN KEY
UcesTl ns C ®* STAT(STICS TABLE INDEX
ucaLcl 0s C = CHANNEL TanRLfE [NDEX
UCRATI oS C % ATTENTION TAsLF [NNDEX
UCBWGT os £o& ZLAGS AND MASK
JCBNAME DS CLI = YUNTT MAME
YcaTtye oS F = DEVICE TYPE
UCBLTS ns H = LAST RGE
UCBSNS .DS M * SENSE INFORMATION

!

¢ CTCAM DEVICE DEPENDENT SEGMENT

UCBCTC
UCBCTCRE
UCBRFRSH
UCBCTFL1
UCBABEND
UCBPCTC
ucenss
UC8OSD
UCBIPLWK
UCBDTFR
UCBADAPX
UCBADAPY
UCBADAPI
k
UCBCTFL2
UCBCEAP
UCBINT
ucssuP
UCBATTN
UCBRQE
UCBT IMER
UCBLCMD

R
UCBCTFL3
UCBWTOR
UCBFSTIM
UCBCTFL4

A

EQU
EQU
GS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

0s

EQU
EQU
EQU
EQU
EqQu
QU
EQU

DS
ECU
EQU
CS

F & ADDR OF RESIDENT USER TABLE
X*80' * CTC IN REINSTATEMENT

x¥40* * OTHER SYSTEM RETURNED 7D READY
C

X*80' * CTC HAS ABENDED.RECURSION=]
Xt 40!

Xe20?"

X*10°*

x*Q8*

X*as?

X*03¢

xl "2'

X*Q0!

C

xtgo*

x' (,0!

x*20°

X*10°

xeng*

X904 * TIMER CODE [N CONTROL
Xv02' * COMMAND PRNCFESSOR ACTIVE

c

x*80¢ = STOP,DNWN,QETAY WTQR CUT TN NPER
x+ant EFIRST TIME EMNR DATA TRANSFER

C

—-LCTCI0B - CTC INPUT/QUTPUT BLOCK

108 DSECT
CTCIOs
i0BIOFLG DS 0X
10810BA DS F
108ECH DS F
TIOBFLAGY DS XL1
I0BFLAG2 DS XLl
IOBSENSO DS XL1
IOBSENSL1 DS XL 1
IOBECBCC NS 0x
IOBECBPT DS F
[0BFLAG3 DS 0X
[O8CSW 0s 2F
IOBSIOCC DS X
YOBSTART DS =
TOBDCRPT OS F
IOBRESTR DS F
TOBINCAM DS H
IOBERRCT DS H
IOBSEEK DS 2=
- 1UBCHPGM CS AF
-T08END EQU x

TOBLNTH EQU [N2END-TURITFLG
10B12 EQU [OBLNTH+IOARLNTH

-

CTCOECBD - CTC DATA EVENT CONTROL BLOCK

DECB DSECT

CTCDECED
DECBDSCTY DSECTY

DS OF . ALTGNMENT
DECSDECB DS F o EVENT CONTROL BLOCK
DECTYPE EQU * . TJYPE OF 1/0 REQUFST
DECBNXT DS H . ADDRESS 0< NEXT DFCBH
DECLNGTH DS H LENGTH OF KEY AND DATE
DECDOCBAD DS A . ADDRESS NF DCB
DECAREA DS A e ADDRESS OF KEY DATA QR USER C?
DECI{OBPT D5 A . ADDRESS 0OF 102
DECIOCNT DS F e

SYNC COUNTER FQOR [1/0

-t

C7CDCB - CTC DATA CONTROL BLOCK

CTCDCB

********#****k####t**iﬂxﬁtttt###*t######*t####kt*t*#t#t*tt##t*ntttz:t*t

* *
* " -~ = CYC DATA CONTROL BLOCK — - *
* *
* THIS OSECT DESCRIBES THE DCB FOP THE CHANNEL-TO-CHANNEL ADAPTER =
* THE FIRST 27 BYTES ARE FOR CTC DEVICE DEPENDENT USE AND THE *
* ACCESS METHOD INTERFACE IS FOR BSAM, %
* - *
t*t*##*t*#****#*t*##t*t##tt#**###ﬂ##B#*tt##***tﬂ:#*t*##ttﬁ##**#*tiﬁﬁﬁttx‘:
% *
* THIS IS A CONFIDENT[AL AMOCO PRODUCTICON PPOGRAM *
%* . v *

o

*‘***tt**##**#*#*k##*#ttt#:ﬂ:tttt#*t*k##*#*:&!&tt*ttﬁt#*ﬂt#tt##ﬁtﬁRﬁtﬁt:’:2:

* ' ' OCB SYM3NLIC DEFINITION FOR
- : BSAM—RPAM

THADCS DSECT

% DEVICE INTERFACES
* DIRECT ACCESS DEVICES
DCBRELAD DS A
DCBKEYCN DS ALl
DCBFDAD 0SS cig
ORrRG z-1
pCcaoyTeL 0S A
DS H
DCBTRBAL 0S5 AL 2
x ACCESS METHND COMMON (MNTEZREACS

ORG ~1HADCB+16
DCBXEYLE DS , SL1
DCRREVT DS neLl
DCAREL ns AL3
DCBBUFNDO OS ‘sl

pDCBBUFCA CS A 1
pSa3grL TS -

DLBOSCRG 25 L2

pcelIoBad DS 4

*

DCBBFTEK
DCBBFALN
OCBHIARC
DCBEDODAD
DCBRECFM
OCBEXLSTY

*

DCBODNAM
DCBOFLGS
DCBIFLG
DCBMACR

*

pCBT 10T
DCBMACRF
DCBIFLGS
DCRDEBAD
DCBREAD
DCBWRITE

x

DCBOPTCD
DCBGEPR
DCRBPERR
DCBCHECK

DCBIOBL
DCBSYNAD

DCBCINDL
DCBCINDZ
OCRBLKSI

DCBWCPO
DCBWCPL
DCBOFFSR
DCBOFFSW
pCBlOBA

DCBUSAST

Clgsura-

DS

DS
LS
CS
DS

ORG
DS
DS
DS
DS

ORG
DS
bS
DS
DS
D0s
DS

ORG
DS
DS
0sS
DS
ORG
0s
DS
ORG
0s
oS
os
NRG
DS
ns
DS
0s
0s
ORG
s

-
wa

FOUNDATION EXTENSION

naLl
0RL1L
cBLl

0o8tl

FOUNDATION BEFORE OPEN

[HADCB+#+40
cLs
BLl
BL1
BL2

FOUNDATION AFTER OPEN

IHADCB+ 4D
BL2

BLZ

3801

A

0A

CA

0SAM-BSAW—RPAM COMON INTERFCACE

I14ADCB+52
g3aLl

0A

A

A
IHADCR+56
M[L1L

A
IHADCR+&0
Ry

ALl

H

C(HAQCR+ A4

gLl

AL

RL1

BL1

A
IHADCB+80
St

-
YNy

DCBNCP
DCBEQOBR
DCBEOBW
DCBDIRCY
DCBLRECL

DCBCNTRL
DCBNOTE
DCBPOINT

*

DCBUS ERX
DCBCTCID
DCBECBPT
DCBCTECH
DCBLTYRSV

DCBERASE

ORG
DS
DS
DS
DS
DS
ORG
0s
05s
DS

ORG
DS
0s
bS
DS
DS
DS
GRG
bS

! BSAM—BPAM INTERFACE

IHADCB+T72 M2N18
08L1

A

A

H

H

IHADCB+84

OA

oA

A

CTCAM DEVICF DEPENDENCY
IHADCB

mooaI

£

cLs8
IHADCB+B4
c

CIB - COMMAND INPUT BUFFER

'c18 DSECT
: 1EZC1I8
]
* &k & % X ® 5 & ¥ % * : % & k % A % &k # € ¥ ¥ ¥ k ¥ &£ % & X ¥ x % ¥ &k X
*
. COMMAND INPUT RUSFER MAPPING MACRC
r
* RELEASE 20 02-16-70
‘ -
. DS 0o - CIBPTR
*
CIBNEXT DS A~ ADDRESS OF NEXT CIB IN QUEUE {ZERO FOR LAST)
CIBVERB DS c - COMMAND VERB COOE
CIBSTART EQU X*04% — COMMAND CODE FOR START
CIBMODFY EQU X'644% — COMMAND CODE FOR MODIFY
CIBSTOP EQU X'40' — COMMAND CODE FOR STCP
CIBMOUNT ECU Xt QC* - COMMAND CODE S0OR MOUNT
CIBLEN OS FLL — LENGTH IN DOUBLEWNRDS MF CIB INCLUCING CIBRDATA
: oS XLe - RESERVED FOP CSCH COMPATIRILITY
CIBTJIO OS5 cL2 - TSO TERMINAL JOB [DFNTIFIFR
CIBCONID DS c - IDENTIFIER QF CONSOLE ISSUING COMMANG
0s X - RESERVED
CIBDATLN DS H - LENGTH IN ARYTES OF DATA [N CIRDATA
CIBDATA DS cLs — DATA FROM COMMAND OPERAND

(LENGTH OF CI80ATA IS & MULTIPLE OF EIGHT 3YTCS
CEPENDING ON THE VALUF CONTAINFD IN CISLEM}
START = SNUBTH ORSI{TCNIL PARAMETER ([PAPMYALUC?
MODIFY — RESIDUAL NSZDANT [MAGE SOLLOWING fnvMi
- TERMINATING E12ST POSITINANAL PARAMETES
sSTQoP - NONE {CI8 GENERATED ONLY TO GIVE CONSOLE 181

'3****‘##**#*!**#**#**##t#t£=:=t:‘;:;~

L3R N BE B 3R BN AR A%

CTC USER INTERFACE

'Use of the Chanhel-to-Channel Access method is much like that of BSAM. How-

ever, only system tasks are accepted as valid users. If a task in problem pro-
gram state attempts to use the CTC, he will abend at the time he issues his

first READ or WRITE.

The Channel-to-Channel adapter should be viewed as any other I/0 device. It
must have a DCB coded within the user's program and it must reference a DD

card. Each user will be assigned a user jdentification number from 2 to 14.
This number will be used by the CTC to synchronize I/0 between this user and

the user with the same id on the other system.

Other aspects of BSAM are also apparent. I/0 is scheduled for execution by
the user through the READ and WRITE macros; and a CHECK routine has been pro-
vided to allow standard use of SYNAD exits. An additional feéture has been
provided in the ERASE routine. This allows a user to "un-queue" a READ or

WRITE under certain conditions.

There are three EC8's for each user that the CTC system posts. The READ and
WRITE ECB's are posted upon their I/0 completion, and the sta%us ECB is postad
when a change in system status is encountered. Since a change may occur 2%
any time (e.g. other system goes down), the status ECB should always be

waited on.

A brief discussion follows on the use of each of these macro instructions.

OPEN
CTCOPEN (DCBNAME}
]

The CTC OPEN routine will open one CTC DCB at a time. Since a typical user
will fssue both READ's and WRITE's, the DCB's are opened for INOUT. The
CTCOPEN routine gives a return code in register 15 upon completion. This
code should be used to determine the status of the other system, Values for

these codes are listed in Attachment I.

. The DCB for the CTC should be specified as follows:

DCBNAME DCB DDNAME=CTCXXXXn,LRECL=mmm,BLKS IZE=mmm,DSPRG=PS ,MACRF={R,4)

Where:
n - Assigned user id (2 thru E)
XXXX - Any alphanumeric characters
Since the Access Mathad does not provide blocking, the LRECL field is for user

information only. It should be the same as the blocksize.

The expanded 0CB will be 88 b.-:3 in lengta. [addition to typical B3AY
DCB contents, OPEN routine wiii provide a pointer to the user's status EC3 In
the second word. This ECB will be posted by the CTC system when any change in

status is encountered in either processor X gr Y.

The DOcard format is:

J/CTCUSERS DO UNIT=uuu where yyu=address of the CTC device

READ

L}
READ DECBNAME,DI,DCBNAME,BUFNAME, {T S 2 »'$',0,0

engtq}

Explanation of the coding of this macro is in the IBM Data Management Macros
Manual., Data transfer between proﬁessors does not necessarily occﬁr when the
READ is issued. The function of the READ is to schedule a read request in the
CTC Read/Write Table and notify processor Y of its presence. Data transfer

will not occur until a WRITE is issued by Processor Y.

~ The READ will return a code to the user in register 15 indicating whether it
was scheduled. If it was scheduled successfully, the return code indicates
the status of the other system. The list of return codes from READ and WRITE

can be found in Attachment I.

WRITE

WRITE DECBNAME,DI,DCBNAME,BUFNAME, g 5! 2;5',0,0 ' i
{length)

Explanation of the coding of this macro is in the I8M Data Management Macros
Manual. The function of the WRITE is to schedule a write request in the C7C
Read/Write Table. If at that time a READ has Been issued by processer ¥,
data transfar occurs and users in both processors are posted of the compietions.
Otherwise, the WRITE is enqueued to wait on the read from processor Y. A
return code is in register 15 7or the user to analyze. 7ina same retfurn CCCes
are avaliable fér both READ's and WRITE's. See Attachment I for a complete
1ist. *

The DECB used by the CTC is seven words in length. The sixth word is usead
at the time a user's ECB is posted. A fullword binary counter vaiuve, ingcre-
mented by one for each post, is placed there to enable the user to decide
thch DECB, the READ or the WRITE, was posted first. The seventh word is

initially zeroes and remains unused by the CTC system.

Both a READ and a NRITEtéan be outstanding to the CTC from each user at any
one time. However, an attempt at scheduling a second READ or WRITE before
the first has completed will result in a return code from the READ/WRITE

. routine and the second request will not be scheduled.

CHECK
CHECK DECBNAME

The CTC CHECK routine provides the same service as does the BSAM CHECK.
If the user has specified a SYNAD routine and the post code from the I/0
completion is not 00, the SYNAD routine will be entered following standard

SYNAD cenventions.

The CHECK routine can ¢nly wait on one 2C8. Thus, jts use will vary depen-
ding on the user's system design since the system status ECB should also

be wa{ted on. That is, if the user's READ's and WRITE's are jssued by a task
ather than the one monitoring system status, CHECK will be useful, ctherwise,

it is recommended that a muitiple WAIT be used rather than CHECK.

ERASE o
ERASE DECBNAME [LPURSE]

-5-

From time to time it may be necessary to dequeue a previously scheduled READ
or WRITE. This 1/0 may have already been issued to the channel or it may

have just been qu?ued into the Table. The user may dequeue this request by
{ssueing an ERASE. If the PURGE option is not used and the request has already
been sent to the channel, a return code in register 15 will indicate the
irequest cannot be satisfied. If, however, PURGE is specified, the RQE will be

1

tpurged for that request.
|
A request to ERASE a READ which has already tapped the other system will not

. be serviced even if the PURGE option is specified.

CLOSE
CLOSE {DCBNAME)

e N
This will close the DCB and cause notification to be sent to processor Y of
the action. Any outstanding I/0 requests are ERASE'd. If the user's program

abends, abend will issue the CLOSE autcmatically.

DSECTS

Two macros used by the CTC modules may prove ~2inful to users. These are
CTCDECBD which will provide an expansion of the CTC DECB, and CTCDCB for the

DC8; DSECT statements must be provided for these macros.

RETURN CODES

RETURN CODES AND POST CODES TO CTC USERS

1

The following is a list of return codes from various CTC user modules. A}l

return codes are right justified in register 15.

CTCOPEN

0o -
4 -
g -
12 -
16 -
20 -
4 -

READ/WRITE

0 -=
4 -
8 =
12 -
16 -
20 -
24 -
28

DCB opened successfully - Y user already open

DCB opened successfully - Y user not open

CTC not available for this UCB

UCB specified is not a CTC UCB

Another user is already open on this UC8 with the same user id.
DDONAME s not in TIOT

DCB already open.

READ/WRITE scheduled successfully

User not yet open in Y

CIC to Y down

Unable to schedule multiple READ/WRITE
£7C in X not started on this UC3

Open has not been done on this UC3
Invalid DOname

“tan't handle zero length buffer

Successfully erased

I/O'already sent to channel

Unable to ERASE read due to read tap
Invalid DECB address

C

POST CODES
The following POST codes are valid in the READ or WRITE DECB's:
] .

0 -~ Successful data transfer
4 - Incorrect length condition received

| 40 - This DECB has been ERASE'd.

|

iThe following PCST codes reflect system status change and will be in the

users status ECB:
i

8 - User in Y closed
12 - CTC in X closed
16 - CTC in Y going down

Q 20 - CTC in Y coming up after an IPL
28 - CTC in Y coming up without an IPL
éB - User in Y row open
32 - Processor Y in STOP mode

36 - Processor Y down

All post codes are in the leftmost byte of the ECB.

)

OPERATOR INTERFACE
: .

The CTC (Channel-to-Channel) is used to connect two channels together so that

users in two CPU's can communicate with each other. The CTC system operates

Zas a system task in each machine that is connected to another with a Channel-

Eto-Channe1 adapter. Each CTC system task is capable of handling up to sixteen
}
adapters and provides the necessary software so that users can establish

~ communications between two CPU's, A1l of the users of the CTC are also system

tasks; therefore, the CTC must be started before any of the tasks that use it.

Starting the CTC System

The CTC is started using the procedure
S CTC.C

NOTE: The modifier is not necessary, but will allow shorter type-ins.

The start procedure can be modified as follows:
R=18 Region size
S='PARMS' Start Parameters -
{xxx,n) where xxx is-the system n.moer,
N is the number users allowed.
NOTE: The system.number rafers 7o th2 machine
system number on the other side of the adapter.
EXAMPLES: .
A. S CT7C.C.8='739,2,287,3"

Start: a CTC to system 739 with 2 users and one to 237 with 3 users.

B, S CTC.CS5="287,1"

Start one 077 to system 287 with one user,

p

" To stop the entire CTC system

c. S cTC,S='(739,,287)'
Start one CTC to 739 and 287 with the default number of users.

NOTE: Parbnthesis may be used as desired.

After the CTC system has been started, an individual adapter.can be started by

using the modify command
\ FC,S=XXX,N

The format of start is the same as in the Parm field.

b
 EXAMPLES:

D. FC,5=287
Start 287 with the default users.

£. FC,S=(287,,739,5)}
Start 287 with the default number of users and 739 with five.

Stopping the CiC System

The CTC system can be stopped,or an individual adapter can be stopped without

affecting other adapters that are operating.

PC (or,if started without tine modifiers PCTC)
To stop a single adapter ---
FC,P=XXX where XXX is the system number.

NOTE: If,this terminates the last adapter, the CTC system will terminate.

. -

EXAMPLE:

F. FC,P=287
Stops the adapter to system 287.

Display Status

|
iThe status of the CTC system or an individual adapter can be displayed by

i

rssuing---
, FC,D=A Displays all of the adapters that have been started in the system.
FC,D=XXX Displays only the adapter specified by the system XXX.

The format of the display is
/ -
C CTCOT8I SYSTEM=XXX,UCB=UUY
< +DOWN

/ »STOPPED
- S

Sending Messages '

The CTC can be used to send messages between two consoles on different machines.
The operator must specify the system number and the console to which the ;essage

is to be sent.

The format of the command is ---
FC,XXX,CC,MESSAGE
Where CC is ---
MC - Maater Consoale

PA - Printer Area

O

TA - Tape Area
TL - Tape Library
TP - Teleprocessing Area

BD - Broadcast to alil Consoles.

: EXAMPLES:

i

P. FC,287 ,MC,MESSAGE TO BE SENT TO MASTER CONSOLE ON 287.

L. FC,288,80,MESSAGE TO 3£ SENT TO ALL CONSOLES ON 288.

Adapter Timeout

The CTC system sends a protocol I/0 to each adapter at given time intarvals

to determine if the other CTC is still operating. If the other system fails

to respond, the operator is asked the status of the other system in the following

message---

CTCO991 WHAT IS THE STATUS OF SYSTEM XXX-REPLY U,S,0R D

The conditions under which these replies should be made are

u-1)

2)

S - 1)

D-1)

Reply U if the status of the other system is unclear. HNo action
is taken and if the other system does not respend in anotnher
interval, the message will bz rooaczaz,

Reply U if the CTC in the otner system is down, but will be resiartec,
Reply S only if the other system is stopped (in manual mode).

Reply D only if the other system will be IPL'ed hefore the CTC

system js «larta!

O

CTCo01I

CTC0021

CTCO03!

CTCo04I

CTC0051

CTC MESSAGES

INVALID START REQUESTED

Explanation: START field on parm or in modify was invalid.

Response:

Enter correct parameter,

(SSS) INVALID USER FIELD

Explanation: User field in a start command contained invalid
digits, - .

Response:

Enter correct USER field.

(SSS) TOO MANY USERS REQUESTED

Explanation:

THB_,H______

i{rteen is the maximum nurber allowed.

Response:

Reduce number of users.

(SSS} CTC ALREADY STARTED ON UCB XXX

Explanation:

that already nad on2 starzes on it

An attemot was ~ade *¢ start a2 CTC on a UCS

If there is not another CTC started on this UCS,

Respanse:
the UCB must be cleared out. An IPL will do this.
{Words seven and eignt must be - 00000000 08020C0G)

CTC SYSTEM ERACR-CODE=X

Explanation: An error occurred in the CTC system as
of a logic errcr.

X=0 Unabie to locate DONAMES

X=1 Maximum number of CTC excesded

Response:

Call system programmer,

More users were requested than could be handied,

CTCQ06!I

¢TCO071

. C1C008I

CTC0Q9I

CTCO0I

CTCO13I

[a WAL LRI LLN -

-2-
(SSS) DEVICE ON XXX NOT OPERATIONAL

Explanation: The adapter on UCB XXX is {a) switched off or
15; there is a hardware malfunction, ,

Response: If it 1s {a), turn it on and retry. If it is (b},
cali a CE., L .
CTC SYSTEM IS STOPPING

Explanation: The system has no adapters operating and is
stopping.

Response: -None.

CTC SYSTEM IS STARTING

Explanation: The CTC system will accept modifies from the
console and is starting the adapters specified in the parm
field.

Response: Enter desired commands.

SYSTEM XXX IS NOT. ACTIVE

Explanation: A reference was made to an adapter that was
not active.

- Response: .Enter correct system number.

(SSS) WTO BUFFER BUSY - TRY AGAIN

Explanation: A previous message that was to be sent to another
CPU has not been sent.

Response: Retry message.

(SSS JINVALID RESPONSE - RETRY ASSUMED
Explanation: (a) A correct response to CTC 099 was not entered

affer three attempts. (b) A response of D or S was entered,
but the system was in run mode.

Response: None.

CTCO141

CTCO171

cicolsl

CTCo18I

CTco20I

CTCO9%A

SYSTEM XXX INVALID
Explanation: System XXX is not a valid system number.

Response: Enter the correct system number.
} .

INVALID MESSAGE
Explanation: Message format entered was invalid.
Response: ~Correct and retry.

-

SYSTEM=SSS,UC8=UUY g
DOWN

'sT0PP
z_STO 0

Explanation: Response to a display status.

Response: None.

(SSS)CTC SUBTASK ABENDED - XXXXXX

Explanation: A subtask of the CTC abended with a completion
code Of Xxxxxx.

Response: If the supervisor abended, that adapter will be
stopped. If the command processor abended, it will be reinstated.
If two abends occur, the systam will abend. HNotify system
programmer.

{SSS) CTC COMMAND PROCESSOR REIMSTATED

Explanation: The Command Processor abended but was reinstated.

Response: Notify system programmer.

WHAT IS THE STATUS OF SYSTEM XXX- RIPLY U5, CR &

Explanation: The system specified by XXX has not restondac to
protoco 1/0.

Resgonse Reply one of the FoTTOW1ng
a) Status of other system is unclear
b) CTC in other system is down, but will be restaried.

S - 2} Only if the other s o--- §s i manyal mods,

D - a) Only if the other system will be IPL'ed before the
CT7C 1s started again.

CTC1001

CTCioNI

cTCi021

CTC1031

CTC1041

CTCI051

CTC1061

SYSTEM XXX STOPPED .
Explanation: The system specified by XXX is stopped.

Response: None.

SYSTEM XXX DOWN
Explanation: The system specified by XXX is down.:

Response: None.

SYSTEM XXX CTC OPERATIONAL

Explanation: System XXX is ready to communicate with the
other system. .

Response: None.

SYSTEM XXX CTC TERMINATING

Explanation: System XXX has issued a P CTC
Response: None.

SYSTEM XXX CTC IS DEAD
Explanation: The CTC to system X' has been close&.
Response: Nore. '

SYSTEM XXX CTC 1/0 ERROR
Exg?anatioh: 1/0 Error occurred,

Response: Possible ~:-aware malfunction. See if adapter is still
enabled.

SYSTEM XXX CTC UP AFTER IPL

Explanation: The CTC is ready to communicate with' the other
systems.

Response: None.

CTC1071

-5.

SYSTEM XXX CTC ACCEPTING CMD$

Explanation: The CTC is ready to accept commands for c¢onsoles
on other machines.

Response: Modify commands for the console task will be preocessed.

INTER-SYSTEM SHARED ENQUE

Standard 0i1 Company (Indiana)
Manual # CSD0O082
January 1973

CONTENTS

SHRENQ Functional Description « v« v v o v 0 v - 1
Definitions and Miscellaneous Information 3
Table of Across System Names « ¢ « o o ¢ o v v o v o o e 5
Operating Instructions ¢ v v o 0 o v o e e e e e e 5
SHRENGQ Console Messages+ .+ « « e e e e e e e e e e 11
SHRENQ ModuTes+ « v ¢ = = ¢ o o o o s e e e e e e 16
Q-Messages Sent Across CTC by SHRENQ . . . « « v v v« v o o o o 2]

SHRENQ Installation
Instructions and Proclib Procedure « « « « « « 3%

SHARED ENQUE FUNCTIONAL DESCRIPTION

In a single system (CPY) environment, IBM's 0S/MVT provides protection

of serially reusable resources via the ENQ macro. Each task issuing this
macro generates requests which are added to unique queues for each
requested resource. ‘The task then waits until its requests are at the

top of all queues where the request was for exclusive control or, if

the request was for shared control, until its requests share the top

of each queue with other shared requests. Only the requested resources are
affected allowing other resources {e.g. datasets on the same volume) to

be accessed by other jobs.

IBM's 0S/MVT implementations of this resource protection when two or more
systems (CPUs) are sharing direct access devices is by use of the reserve
macro. 1ihe resefve macro performs an ENQ in the originating system and
when the resource is obtained, a hardware reserve of the spindle {volume)
is performed; this locks out all other CPUs from accessing any data set

on the reserved volume. Other tasks running in the system that issues the
reserve are not, however, Tocked out from the volume. If any job running
in other CPUs needs access to data sets on a locked out volume, they are

prevented from running until the reserving CPU releases the volume.

1f only the specific data sets needed were reserved, jobs in any CPU which
need different datasets on the same volume could run; this is the basic

concept implemented via Inter-System Shared Enque (SHRENQ).

-2

Inter-System Shared Engue, as implemented by Standard 0il1 Company, 1S
designed to replace the reserve of a complete volume with an EMQ across
systems for only the resources required. This is accomplished by ENQing

the same resource in both systems.

SHRENQ provides all the functions and options of single systam enques,
and in addition, changes certain reserves to ENQs when they are for

application oriented resources. Reserves on system oriented resources
such as those jssued by catalog management and DADSM are not affected

and remain reserves.

SHRENQ also provides an additional option, not supported in IBM singie

system enques, which permits converting an exclusive ENQ to a shared ENQ.

Inter-System Shared Enque consists of a Supervisor system task which
controls a Reader/Writer task and a Monitor task. The Reader/Writer
task interfaces with the Channel-to-Channel Access Method and reads anrd
writes ENQ lists to and from other systems. The Monitor task orders
these lists, releases tasks performing ENQs in its system to complete
the ENQ function and performs the ENQ function for 1ists representing

tasks in another system.

Core requirements for this system are about 16K bytes for the system task
plus the additional amount of System Queue Space required to hold engue

elements and messages to and from other systems.

DEFI TIONS
D

NI
AN

MISCELLANEOUS INFORMAT I ON

This chapter provides definitions for terms used throughout this manual. Also

included in this chapter is some miscellaneous information on SHRENQ.

Definitions

SHRENQ Running Solo

SHRENQ Operational

Active CPU Count

CPU X, CPU Y

Envoys

SYSOTHER

Q-msg

If SHRENQ is running solo, active CPU count=0- and SHRENQ
is not operational. SHRENQ is not sending and receiving
ENQs or DEQs to the other CPU. Jobs in this system

can continue to run without their ENQs going across to
the other CPU. SHRENQ will not place jobs issuing ENQs
in any wait state, although ENQ 1tself may do so. AN
software reserves cause the hardware reserve feature to
be used.

Active CPU count not O, and SHRENQ is not running solo.
SHRENQ is sending and receiving ENQs and DEQs to the
other CPU. A1l running jobs in this CPU pass through
SHRENQ when issuing ENQs, at which time all the across-
system names (see Table 1 this chapter) are sent to the
other CPU. If, however, SHRENQ is in start-up mode,
SHRENQ will place these jobs in a wait state until SHRENQ
has started-up. This is only true when active CPU count

is greater than zero.

The number of active other CPUs not including this CPU.
The number of other CPUs which are receiving our ENQs
and sending us their ENQs. This can be obtained with a
F SHRENQ, D=S command.

CPU X is this CPU. CPU Y is the other CPU. These are
ysed to distinguish the difference between this CPU and
the other CPU. Regardless of what system you are on, it
is CPU X, the other CPU is Y.

SHRENQ utilizes ENVOY control blocks which are used as
phantom TCB, and SVRB for ENQs originated in the other
CPu.

SHRENQ when running, has an ENQ up for "SYSOTHER C1%. Any
+ime an ENQ originating in this CPU is waiting for the

ENQ to be satisfied in the other system, a QEL is placed
on "SYSOTHER" QCB chain.

This is the message that SHRENQ sends/receives to/from
the other system to invoke ENQs, DEQs, etc. Any time

an ENQ, DEQ, etc. is to be sent to the other CPU (CPU Y),
a Q-msg is constructed and given to CTC for read/write
processing.

Across-System ENQs - Some ENQ names are sent to the other CPU and some are not.
The names that do go to the other system are kncwn
nacross-systems® (i.e. any ENQ name sent or receivad
to/from other CPU is an across-sysiem ENQ). See Table
1 for names to be known across-systems.

TABLE 1

Miscellaneous Information

Table of ENQ major names to be known across-systems. These major names, when
ENQ'd by some job, will be sent across-systems if SHRENQ is operational.

SYSDSN DSTAPEA
SYSIEWL SYSPSWRD
SYSIGGLG

USERENQ

The following minor names are the only exceptions for major name SYSDSN. Hhen
a major name of SYSDSN is followed by one of these minor names, it is not
sent across to the other CPU:

SYSCTLG Rnn. (RJE DD * data set)
DAP.JCB TPD. IATRACE
STAND.ALONE, DUMP

T.TURNAR@N

SHRENQ REGION SIZE = 16K

Version I of SHRENQ is for two-CPU support only.

OPERATING INSTRUCTIONS

This chapter contains instructions on how to use SHRENQ, operating practices,
and operator commands. To fully understand the terms used, readsyr shouid Tirst

reference chapter on miscellaneous items and definitions.

SHRENQ operates as a system task. The console operator has the capabiiiiy to:
1. Start or stop SHRENQ
2. Display the status of SHRENQ

3. Invoke a Snap Dump of the SHRENQ system.

Starting SHRENQ

In order for SHRENQ to send and receijve ENQs/DEQs between systems, C1c
must be running. However, SHRENQ can be started without CTC running and it

will wait for CTC to be started.

To start SHRENQ, type in "S SHRENQ"

This command will start a system task named SHRENQ. If CTC is not currently
running in the system, message "SHRENQ21-CTC CLOSED, SHRENQ IDLE" will appear.

SHRENQ will then enter a wait state running sole until CTC is starizd. in

n

system may continue to operate normally if desired. Once CTC is started or
if CTC is already active, message "SHRENQO3-SHRENQ STARTING" will appear.
This indicates that SHRENQ is starting up but is not yet pperational until

message "SHRENQO6-SHRENQ READY" appears.

=) -

During the start-up period, SHRENQ attempts to establish communication with the
other CPU. The nexf message to appear will be "SHRENQO9-SHRENQ WAITING ON CPU
Y TO START SHRENQ". If CPU Y (the other CPU) does not start SHRENQ, this CPU

will wait (running solo) until SHRENQ is started in CPU Y.

If SHRENQ is started in both systems, message "SHRENQO6-SHRENQ READY" should
appear shortly after message "SHRENQO9---", message "SHRENQO6" indicates both
CPUs have established communication, ENQs in each system have been sent to

the other system and SHRENG is now operational.

In order for SHRENQ to start-up, both CPUs can be dirty. (i.e., one or both
CPUs may have ENQs which are to be known across-systems.)} However, SHRENQ
cannot start if both systems contain the same across-system names with disp of

OLD.

It is possible for both CPUs to have many running jobs and start SHRENQ;
however, they may not have old ENQs {to be known across-systems) with the

same name.

If start-up is impossible because both CPUs contain the same ENQ'd names,

messages will appear in both systems. Different messages will appear in

each system. In one CPU the message "SHRENQOT-SHRENQ CANNOT START BECAUSE OF

EXISTING ENQ,S IN OTHER CPU(S)" will appear. This indicates that both CPUs

contain the same ENQ'd name and, therefore, SHRENQ cannot start. In the other

CPU message "SHRENQO1-SHRENQ CANNOT START BECAUSE OF ENQ,S IN THIS CPU BY THE
will appear. '

FOLLOWING JOB(S)"/ This message will be followed by a 1ist of one or more

jobnames that must finish, or release some resource before SHRENQ can start.

-8-

In both CPUs these messages will be followed by message (WTOR} "SHRENGDZ-
REPLY U WHEN CLEAN OR C TO CANCEL SHRENQ". This condition indicates both
systems have identical ENQs to go to the other CPU. If SHRENQ is not to be
run, reply "C" in both systems and SHRENQ will terminate. 1f SHRENQ is to

be run, one of the systems must wait for jobnames listed to finish or cancal
the jobs. Both systems will continue to run with SHRENQ as soic at this
point., When the jobnames listed are terminated, reply U in both systems, and
SHRENQ will restart the start-up process beginning with message "SHRENGG2-
SHRENQ STARTING".

If CPU Y should go down while SHRENQ is starting up, messages "SHRENQ10---"
or "SHRENQ11---" will appear and SHRENQ will wait for CPU Y to come up.

To obtain the status of SHRENQ at any time, type in: F SHRENQ,D=S. Referzance

chapter on SHRENQ messages for description or responding messages.

Stopping_SHRENQ

SHRENQ may be stopped at any time by issuing a "P SHRENQ" command. If
SHRENQ is starting up when a stop 1is jssued, the other CPU will enter a
wait state until stopped or SHRENQ is started again. If SHRENQ is opera-
tional (not in start-up mode), in CPU Y, and SHRENQ is stopped in CPU X,
CPU Y will clean up all ENQs from CPU X and will enter a wait state running

solo, until the other CPU starts SHRENQ.

Any time SHRENQ is stopped, message PSHRENQ20-SHRENQ FOLDS" will appear

indicating SHRENQ has terminated.

Modify Commands

The modify SHRENQ commands have the following format:
F SHRENQ, [command=operand}

where:
F SHRENQ is the @S modify command.

command=operand are valid commands used by SHRENQ.

Four types of modify commands exist.
1. Display status of SHRENQ
F SHRENQ,D=S
This command causes several messages to appear denoting the status of
SHRENQ. Reference chapter on SHRENG messages for further information.
2. Dump core used by SHRENQ
F SHRENQ,D=C
3. PPEN CTC
F SHRENQ,
4. Display Q-Heads
F SHRENQ,D=Q
This command causes a HEX display of {}-Heads for the Monitor-Q, Reader/
Writer-Q and Envoy-Q. This command is a debugging aid.

Commands rumber 2, 3, and 4 are not necessary except for debugging.

Operating Practices

It is most desirable to start SHRENQ immediately after IPL. This will insure
that the system is clean and SHRENQ can start. If this is not possible,
SHRENQ can be started at any time, and will be operational provided there

are no jdentical across-system names ENQ'd in both systems.

-10-

Neither SHRENQ or CTC should ever be stopped.

-11-

SHRENQ MESSAGES

This chapter contains messages issued by SHRENQ; their description, format
and meaning. Each message is preceeded by "SHRENQxx" where xx is the unique
message-id. The following cross-reference 1ist is provided to associate the
message-id with a particular module which issues that message.

MODULE/CSECT MESSAGE PREFIX NO.

SNQSTART

SHRENQ/SUPERVISOR
(SNQSUPER)

SNQMODFY

SHRENQO1
SHRENQOZ
SHRENQO3
SHRENQO5
SHRENQO6
SHRENQO9
SHRENQTO
SHRENQT1
SHRENQ20
SHRENQZ1
SHRENQ22
SHRENQ30
SHRENG31
SHRENQ32
SHRENQ33
SHRENQ34
SHRENQ35
SHRENQ36

SHRENQ37
SHRENQ38
SHRENQ39
SHRENQ4OD
SHRENQ41
SHRENQ42

-12-

"SHRENQO1-SHRENQ CANNOT START BECAUSE OF EXISTING ENQ,S IN OTHER CPU(S}"
SHRENQ cannot start up because of one of the following:
1. Both CPUs contain identical across-system ENQ names with DISP=CLD
2. Asynchronous ENQs exist.
3. 1 CPU contains DISP=0LD, other CPU has DISP=SHR on across-system
name(s).

Action: Wait for jobnames listed in other CPU to terminate.
"SHRENQO1-SHRENQ CANNOT START BECAUSE OF ENQ,S IN THIS CEU BY THE rOLLOWING
JOB(S)” ‘

This message will be followed by a 1ist of one or more jobnames that are
preventing SHRENQ from starting.

Action: Wait for those jobs listed to terminate or cancel the jobs.
"SHRENQO2- REPLY U WHEN CLEAN OR C TO CANCEL SHRENQ"

Always appears after "SHRENQO1" msg.
Action: 1. Wait for jobnames Tisted (in one CPU) to terminate
and reply U to attempt restart.
2. Reply C if SHRENQrot to be run (stops SHRENQ).
"SHRENQO3 - SHRENQ STARTING:
SHRENQ is starting to come up, but not yet operational (start-up routine
has been entered). This message is informational only.
"SHRENQOS - NUCLEUS INVALID"
SHRENQ cannot run because system is not IPLed from modified nucleus which
contains ENQ/DEQ Hooks.
Action: IPL from correct nucleus.
"SHRENQO6 - SHRENQ READY"
SHRENQ has completed start-up functions and is sending/receiving ENQs

etc. to/from other CPU.

-13-

"SHRENQO6 - SHRENQ ENDING"
SHRENQ has been stopped by operator or was starting and SHRENQ in CPU Y
stopped. SHRENQ is either going to terminate or restart.

"SHRENQO9 - SHRENQ WAITING ON CPU Y TO START SHRENG"
Start up in process attempting to estalish communication with SHRENQ in
other CPU. - System is running solo {ENQs are allowed).
Action: Start SHRENQ in other CPU or ignore if SHRENQ not to be run in
other CPU. If SHRENQ started in other system msg "SHRENQO6" should

appear shortly. This message is informational only.

"SHRENQ10 - CPU Y DOWN, SHRENQ 1DLL"
CPU Y status is down as declared by CIC.
- SHRENQ allows ENQs
"SHRENQ11 - CPU Y STOPPED, SHRENQ WAITING"
CPU Y Status is stopped as declared by CTC.
- SHRENQ not allowing ENQ. Jobs issuing ENGs to go across are placed
in a wait state.
- SHRENQ waits for change in CPU Y status.
"SHRENQ2Q - SHRENQ FOLDS®
SHRENQ has been stopped by operator or reply 'C' to "SHRENQO2" msg.
- SHRENQ is dead indeed
"SHRENQ20 - SHRENQ ABEND"
SHRENQ has been stopped by the operator and/or a subtask has abended
in the start-up or come-down process.
"SHRENQ21 - CTC CLOSED, SHRENQ IDLE"
CTC DCB has been closed because of one of the following:
1. Qur CTC went down

2. CPU Y IPL'd - we've already started up

-14-

3. CPU Y dropped {went down)
If 1 - SHRENQ does stimer waiting for CTC to restart.
In any case, SHRENQ is running solo.
"SHRENQ22 UNEXPLAINED ERROR - X"
Where X is a number 1, 2, or 3. Some error has occurred. The type of
error is denoted by the number in the message.
1. No ENVQY found for DEQ received from another CPU.
2. No QFL on SYSOTHER found for a "resources acquired" message
received from another CPU.
3. Invalid message type given to the Monitor.
In any case, SHRENQ will invoke a snap dump and contique to run,
"SHRENQ30 - INVALID MODIFY COMMAND®
Valid Modify Commandé are:
F SHRENQ,D=C To Snap Dump
F SHRENQ,D=S To Display Status
F SHRENQ, To Open CTC DCB
"SHRENQ31 - CTC OPEN"
CTC DCB is open.
“SHRENQ32 - CTC CLOSED"
CTC DCB is closed.
"SHRENQ33 - WAITING FOR CPU Y TO START SHRENQ"
SHRENQ during start-up mode doing as msg states.
"SHRENQ34 - SHRENQ INOPERATIVE"
SHRENQ not sending/receiving ENQs to/from other CPU.
"SHRENQ35 - SHRENQ OPERATIONAL"

SHRENQ is sending/receiving ENQs to/from other CPU.

-15-

| "SHRENQ36 - SHRENQ FOLDING"
SHRENQ is terminating.
SHRENQ37 - SHRENQ RESTARTING"
SHRENQ is restarting itself because of one of the following:
1. CTC has gone down/came up
2. SHRENQ in Y gone down/came up
3. CPU Y gone down/came up.
"SHRENQ39 ACTIVE CPU'S=XX"
XX=# CPUs communicating with this SHRENQ
XX=0 No CPis: we're running solo
XX>0 Means SHRENQ is operational
"SHRENQ4O0 - UNEXPLAINED ERR HAS OCCURRED"
Some error has occurred, SHRENQ will continue to run.
"SHRENQ41 - WAITING ON CTC TO START"
CTC DCB is closed, SHRENQ trying to open every 15 seconds. Can't open
until CTC is started.
"SHRENQ42 - WAITING ON CPU Y TO START CTC"
CTC has gone down in the other CPU. SHRENQ queues up ENQs to go
across until CTC in the other system is started, or a Reply Down or Stop

has been given to CTC.

SHRENQ

-16~

MODULES

This chapter contains module descriptions and task flow of SHRENQ. A1l of

the modules for SHRENQ are Tisted below in brief form:

o T & 5 BER — N 7% B A

MODULE

SNQSUPER
SNQSUPER

SNQSUPER
SNQSTART
SNQRDWTR
SNQFINSH
SNQMODFY
SNQTABLE

CSECT

SNQSUPER

SNQMONTR (Via

IDENTIFY)
SNQSUPER
SNQSTART
SNQTASK
SNQFINSH
SNQMODFY
SNQTABLE

FUNCTION

Supervisor

Monitor

ENQ-DEQ Hook Code

SHRENQ Start-Up Routine
Reader/Writer Task
Come-Down Clean-Up Routine
Process Modify Commands

Determines major/minor names
to be known across systems.

MODULE NAME: SNQSUPER

CSECT NAME: SNQSUPER (SUPERVISOR)

ENTRY FROM: System task control routine via start command.
EXIT TO: 0/S when stop command is issued.

FUNCTIONS: (Main Supervisor for SHRENQ)

This routine identifies SNQMONTR, attaches SNQSTART, opens, closes CTC DCB,
and waits on 1 of 3 ECB's.

Stop/modify ECB

CTC status ECB

Subtask exit ECB

If stop is issued, the Supervisor posts all subtasks to exit, waits for their
completion and then exits. If a modify command is issued, a Tink SVC is
jssued to SNQMODFY to process the modify command. After return from

SNQMODFY, the Supervisor does a QEDIT and waits again.

If the subtask ECB is posted, this indicates a subtask has abended at which
time the Supervisor restores hooks to ENQ-DEQ code within the nucleus, and

performs functions as though a stop command had been issued.

If the CTC status ECB is posted, the Supervisor performs different functions

depending on whether SHRENQ is in start-up mode or operational mode.

-18-

MODULE NAME: SNQSUPER (Monitor)

CSECT NAME: SNQSUPER - Identified as SNQMONTR
ENTRY FROM: Attached by SNQSTART

EXIT T0: 0/S if a Stop command is issued.

FUNCTION:
Waits to be posted by the Reader/Writer (SNQRDWTR) that there is work. When
the Monitor is posted, it DEQ's the Q-msg from the Monitor-Q and processes it
according to type. These messages are from the other CPU and types are:
ENQ List - Monitor issues an ENQ
DEQ List - Monitor issues a DEQ
HOLD MSG - for ENQ use and test - Holds up all other msgs until the ENQ
has been processed.
RET CODES -Return codes generated by the other CPU as a resuit of an ENQ
we sent across.
RESOURCES ACQUIRED - An ENQ we sent across has been successftully ENQ'a

in other CPU.

Once all the Q-msgs are processed, the monitor frees the message, scans the

envoy-Q for envoys to be purged and waits for work.

MODULE NAME:
CSECT NAME:
ENTRY FROM:

FUNCTIONS:

-19-

SNQSUPER (ENQ/DEQ Hooks)

SNQSUPER (ENQ-DEQ Hook Code)

ENQ-DEQ code within the nucleus. Entry points are: ENQ ENTRY,
ENQ EXIT, DEQ ENTRY, DEQ EXIT, TASK SWITCH, ABEND.

ENQ ENTRY - Send ENQ across if not for an envoy and if it is

to be known across-systems. Send Hold msg (by placing on Reader/
Writer-Q) for RET=USE or CHANGE, wait for results. Construct
QELs for SYSOTHER if resource is waiting on other CPU. If ENQ

for envoy, replace regs with phantom TCB, SVRB pointers and exit.

ENQ EXIT - If for an envoy, exit.
If the name is to be known across systems, the "RET=" parm of
the ENQ Tist is checked. If RET= HAVE or zero, the monitor is

posted and control is returned to the nucleus.

If RET=TEST, the issuing task is placed in a wait state until
the return codes are received from the other CPU. If RET=USE or
CHANGE, an ENQ 1ist is constructed for the ENQs which were
successful in this CPU and the issuing task is placed in a wait

until the return codes are received from the other CPU.

DEQ ENTRY - Return to nucleus if not an envoy. If envoy calling

replace regs with phantom TCB,SVRB pointers.

DEQ EXIT - Exit if envoy calling. Uses code in the Monitor to
construct a DEQ 1ist message and places it on Reader/Writer-Q

(if it is known in other CPU).

A
-20- '

TASK SWITCH - Cailled by envoys only when a new QEL has receivad

control (Popped to top). Uses code in Monitor to construct 2

"resources acquired" message toc go to other CPU.

ABEND - Uses code in Monitor to construct an "abend" message

to go to other CPU.

NOTE:

A1l messages sent to other CPU are done so by placing them on Lhe

Reader/Writer-Q.

-21-

MODULE NAME: SNQSTART (Read/Write Start-Up Routine)

CSECT NAME: SNQSTART

ENTRY FROM: Attached by SHRENQ Supervisor

EXIT TO: XCTL to SNQFINSH if SHRENQ cannot start-up.
XCTL to SNQRDWTR if SHRENQ can start up.

SYC 3 exit back to Supervisor if invalid nucleus.

FUNCTIONS:

SNQSTART performs all initial{zation functions for SHRENG Lo starb up. .
SNQSTART will always be in control at the same time in both CPUs. Functions
include: Load SNQTABLE, initalize control blocks in common, construct and
chain. SYSOTHER QCBs, establish hooks with ENQ-DEQ code in the nucleus, issue
hand-shake msg with other CPU and wait for other CPU to respond, determine
up, down, stopped status of other CPU. The remainder of its functions are
performed in non-solo mode which means no ENQs or DEQs {which are to be
known as across-systems) are allowed. Any requester of these is placed in

a wait state until start-up is complete.

After communication is established with other CPU, SNQSTART determines by
scanning the QCB chains if this CPU is clean or dirty. "Clean" means there
are no exclusive ENQs to be known across-systems. "Dirty" means there are

exclusive ENQs (and/or reserves) to be known across-systems.

In order for SNQSTART to continue start-up functions, both CPUs cannot
contain the same ENQ'd name. If this occurs, SNQSTART issues a WICOR
indicating one system must be cleaned up and restarts itself after the

operator has responded.

-22-

Fach CPU receives QCBs-QELs from other CPU, chains them in this system’s QCB
chain and qonstructs envoys. Once each CPU's QCB is received, SQNSTART Trezes

its buffers, attaches the Monitor, posts any ENQ-DEQ requesters and XCTL's
to SNQRDWTR.

Each CPU that is dirty sends all eligible QCBs-QELs across to other CPU{s).
The eligible (to be known as across-systems) QCBs are determined by Tinking
to SNQTABLE. Any QELs that are sent across and are waiting for resources

in this CPU are also entered on the SYSOTHER-Q.

Any exclusive reserves to be sent across are released and sent across as an

ENQ System.

After all across-system QCBs have been sent across, SNQSTART frees its
buffers, attaches the Monitor, posts any waiting ENQ-DEQ requesters, and

XCTL's to SNQRDWTR.

During start-up, it is possible for the other CPU or CTC to go down. If
this occurs, SNQSTART cleans up everything it's done, sets to run solo

{allows ENQs and DEQs) and waits for other CPU to come back up.

-23-

MODULE NAME: SNQRDWTR (Reader/Writer Task)

CSECT NAME: SNQRDWTR

ENTRY FROM: XCTL'd to from SNQSTART

EXIT TO: XCTL's to SNQFINSH when a stop SHRENQ command has been issued,
or if SHRENQ restarts itself (i.e. - if other CPU goes down,
this CPU restarts SHRENQ).

FUNCTIONS:

SNQRDWTR 1ssues reads and writes to CTC. It acts as an interface between
the Monitor, and CTC or the other CPU. As reads/writes are processed,
SNQRDWTR places the appropriate Q-msgs on the Monitor-Q, gets and frees

Quffers, determines transmission order and waits for work.

-24-

MODULE NAME: SNQFINSH (Read/Write Finish)

CSECT NAME: SNQFINSH

ENTRY FROM: XCTL'd to from SNQSTART if a stop SHRENQ command is issued
or if SHRENQ is restarting.
Also XCTL'd to from SNQSTART if SHRENQ can't start-up or
restart.
Also 1ink to from SNQSTART.

EXIT T0: Return to caller if linked to from SNQSTART.

Normal exit 1f XCTL'd to which causes subtask exit.

FUNCTIONS:

SNQFINSH performs partial or total clean-up functions if link to for partial
clean-up (i.e. - clean up other CPU's blocks only). SNQFINSH purges all
envoys and their QELs by linking (via BALR 14,15) to code within the nucleus
(ENQ-DEQ). If any QELs from this system were sent across?%n ENQ "systems™,
meaning originally it was a reserve, the UCB reserve count is incremented in
order to reinstate the reserve. Next, it frees the Monitor-Q and the Reader-

Writer-Qs, frees any IRB Blocks, and returns.

If XCTL'd to for total clean-up, SNQFINSH performs ail the above functions
plus detaching the monitor, restoring ENQ-DEQ Hooks, DEQs and frees SYSOTHER

QCBs and decrements active CPU count.

RN

-25-

MODULE NAME: SNQMODFY (Process Modify Commands)

CSECT NAME: SNQMODFY

ENTRY FROM: Linked to by SNQSUPER (Supervisor) when a modify command
has been issued.

EXIT TO: Return to SNQSUPER (Supervisor).

FUNCTIONS:
This routine processes modify SHRENQ commands to display the status of

SHRENQ or to take a snap dump if requested.

-26-

MODULE NAME: SNQTABLE (Across-systems name table)

CSECT NAME: SNQTABLE

ENTRY FROM: Loaded by SNQSTART, entered via BALR 14, 15 from ENQ entry hook,
DEQ entry hook, and from SNQSTART. |

EXIT T0: Return to caller

FUNCTIONS:

This routine scans the major/minor name table (located in this CSECT)

to see if the major/minor name passed by the caller is to be known
across-systems. This CSECT contains a list of major names to be known
across-systems, and for each major name, a 1ist of minor names to include

and/or exclude.

-27-

"SHRENQ TASK FLOW"

[S SHRENQ] (Normal Start-up)

]TCB‘
SNOSUPER
(Supervisor)

ATTACH

TCB

SNQSTART _LOAD SNQTABLE

XCTL
ATTACH

N
SNQRDWTR

TCB

3

SNQMONTR

Task Flow during normal start-up. SHRENQ (Supervisor) attaches SNQSTART.
SNQSTART loads SNQTABLE, attaches the monitor which was identified by the
Supervisor, XCTL's to SNQRDWTR.

-28-

[S SHRENE\

TCB

SNQSUPER {Start-up not possible)

(Supervisor)

ATTACH

SNQSTART LOAD SNQTABLE

XCTL

SNQF INSH

TL’ EXIT

Task Flow when start-up is impossible because operator says to cancel or a
"P SHRENQ" was issued, or CTC goes down.
SHRENQ {Supervisor) attaches SNWSTART, SNQSTART Loads SNQTABLE, XCTL's
to SNQFINSH.
SNQFINSH cleans-up and exits.
SHRENQ (Supervisor) either restarts or exits.

-7Y-

[:; SHRENQ:} : (Task structure after start-up
complete)
1.TCH
SNQSUPER
{(Supervisor)

1
Ly

3
]

SNQRDWTR SNQTABLE

3.7CH

i
!
I
!
|
t

SNQMONTR

After start-up is complete and SHRENQ is operational, 3 TCB's exist.
1. SNQSUPER - Load module contains Supervisor, Hook code, and Monitor.
2. SNQRDWTR - Performs I/0 with CTC.
3. SNQMONTR - Code is in SNQSUPER Load Module.

- -

b3
]

WA
- - .l{

Envoy Control Block

. cm wmn

»

This Control Block 1s constructed and used by SHRENQ. There i5 one
envoy for each ENQ received from the other CPU. They are chained
. if-_ together in SQS, the first envoy pointer is located in SHRENQ common
§§ka &rea which is part of load module SHRENQ. The QEL for the other
: é@U's ENQ points to its envoy for a phantom TCB and SVRB address.

W T e ok o e e e do e de de ke dedo sk de e e e dede e dedede Sk kede R deded Rdedekkde keokok kk

® *
* ADDRESS OF NEXT ENVOY *
»*, *
stk dh ek hhkdkkhkhkhkikdkhkdkkkikhkhkhikhkkhkhkhkhkkhkikhkhkithkhkhkhkdthkhkkthtihk
* 4 * *
* RES'S * ADDRESS OF PREVIOUS ENVOY *
* ' QUE'D * *
e dedede de e ek Ao e de e dede e vk Yok de e o o e e v e de Je e de v e e e de e e e Yo ke v deve dedeve ke e ke keok
* 8 * *®
% SOURCE * ADDRESS OF TCB IN OTHER SYS *
* CPU * *
Pl T e R e AR R Lt h bt R bttt ke a ke ad oot &l s s L]
* 12 * ” *
* WAIT * ADDRESS OF TOP RB *

K COUNT * *
f***z*********************g*#*********************r
Ei-} jﬂ (&OREC]:?;’) USER ; Ré Sfﬁyfb . :ﬁu*;
: 20 ReseRvEd .,,i
ENVFWD DS F - T T ONEXT ENVOY ON LIST
ENVRESCT DS 0X " COUNT OF RESOURCES ENQUED ON
* BY THIS ENVOY
ENVBCK DS F PREVIOUS ENVOY ON LIST
ENVRLTCB DS F ADDRESS IN OTHER SYSTEM OF TCB
* REPRESENTED BY THIS ENVOY
* HIGH BYTE INDICATES WHICH CPY
ENVWTCT DS 0X NUMBER OF RESOURCES ON WHICH THIS
* ENVOY IS STILL WAITING
ENVTOPRB DS F TOP RB (RB IN ENVOY UNLESS

> ASYNCHRONOUS ENTRY OCCURS)
NVLL EQU *~ENVOY ILENGTH OF ENVOY CONTROL BLOCK

EkkkdhkkdAhkkhhkhhkiikikhddhihkihkhidhiihiihkys

* *
* ENVLL MUST REMAIN *
* A MULTIPLE OF 8 *

oo e oo Fe e e e e e de v e de e e de e skedke ke e e e ook e ek ok ok de e dede ke

CEwvTIID DS H TIID Fok T30 USER (oR ZERO)
LNVRSEVD DS oX ReSERVED

-31-

Q-MESSAGES SENT ACROS S CTC BY SHRENQ

SHRENQ sends and receives 14 different types of messages via CTC. This

chapter describes the different types of messages and how they are used.

Messages one through six are constructed and read or written by the SHRENQ
Start-Up Routine (SNQSTART). The only time these messages are used is

during start-up. For further details see QMSSG DSECT description.

1. HAND-SHAKE MESSAGE - Denoted by X'FF' in high-order byte of message.
Length is 8 bytes.
This message is used to establish communication with the other CPU. One

is read and written from each CPU.

2. ENQs WERE SUCCESSFUL - Denoted by X'28' in Q-msg type field. Length
is 8 bytes.
This message is used to tell the other CPU that this CPU has successfully

established across-system ENQs sent by the other CPU.

3. ENQs NOT SUCCESSFUL - Denoted by X'2C' in Q-msg type field. Length
is 8 bytes.

This message is used to tell the other CPU that this CPU could not ENQ

the across-system names sent by the other CPU. This would occur if

asynchronous ENQs exist, or if an ENQ with DISP=0LD that was sent across

already existed in this system.

-32-

4. (QCB CHAIN MESSAGE - Denoted by X'30' in Q-msg type field. Length
is 8 bytes.

During start-up, each system must send across some existing ENQs and

reserves. This is done with a QCB chain message. The contents of the

message are the actual major, minor QCBs and QELs.

5. ASYNCHRONOUS ENQ MSG - Denoted by X'34' in Q-msg type field. Length
is 8 bytes.

This message is used if a CPU contains asynchronous ENQs. It is used to

tell the other system that asynchronous ENQs exist and, therefore, SHRENQ

cannot come up.

6. END-OF-COMMING-UP - Denoted by X'38' in Q-msg type field. Length
is 8 bytes.
This is used to tell the other CPU that this CPU has finished sending its
ENQs.
NOTE: When "ENQs" are used in the above 6 message types, it
actually means the major, minor QCB and QEL chains. In
the remaining message type explanations, "ENQs" refer to an
ENQ, DEQ, Reserve parameter list as constructed by an ENQ
macro, and not the QCBs themselves. The only time QCB,QEL

control blocks are sent across is during start-up.

-33-

Mgsspges 7 through 14 are used by SHRENQ after it is up and running

in both systems. These messages are constructed by the Monitor, ENQ-DEQ
Hook code {which uses the Monitor code) or the Reader/Writer task. If
the message is constructed by the Monitor or the ENQ-DEQ Hook code, it
ijs placed on the Reader/Writer Queue to be read or written. In other
words, all these message types are read or written to CTC by the Reader/

Writer subtask (SNQRDWTR).

7. REQUEST FOR LARGE BUFFER - Denoted by X'00' in Q-msg type field.
Length is 8 bytes.

If an ENQ or DEQ 1ist exceeds 96 bytes, the message is sent across first

to tell the other CPU a larger message is coming. The Tonger length is

in the first half-word QMID (see DSECT of QMSSG).

8. ENQ LIST - Denoted by X'04' in Q-msg type field. Min‘mum length
is 96 bytes but could be larger depending on the size of the ENQ
1ist.
This message contains an EIG parm list to be ENQ'd in the receiving
system. When a task in this CPU issues an ENQ, the ENQ SVC branches
to the SHRENQ "ENQ Entry" Hook code located in SNQSUPER module. If the
major-minor names are to be known across systems, the Hook code constructs
an ENQ parm list Q-msg and places it on the Reader/Writer Queue to be sent
to the other system. When the other CPU receives the ENQ msg, the Reader
Writer places in on the Monitor-Q to be ENQ'd in that CPU.
9, DEQ LIST - Denoted by X'08' in Q-msg type field. Length is same as
ENQ Tist.
This message contains a DEQ parm list to be DEQ'd in the receiving CPU.

The flow of operation is the same as that of ENQ except that the DEQ

message is contructed at "DEQ EXIT" hook.

10. ﬁ?LD MESSAGE - Denoted by X'0C' in Q-mgs type field., Length is
/ NG

£ bytes,

. When a task issues an ENQ (RET=USE or CHANGE), a "Hold msg" is sent first

to tell the other CPU's monitor to ho]? all processing until another

message with the same TCB addréigjisriéﬁ;ived. After the hold message is

sent, the ENQing task completes the ENQ attempt in its CPU, then the

actual ENQ list is sent.

11. ABEND OCCURRED-FOR THIS TCB - Denoted by X'10' in Q-msg type field.
Length is ,,S?bytes. |

When a task abends, the "Abend Hook" code is entered and this type message

is constructed and placed on the Reader/Writer Q to be sent to the other

system. When the other system receives it, the other system purges all

- resources belonging to that TCB, s#nd 7./7D.

12. RETURN CODES - Denoted by X'14' in Q-msg type field. Length is
variable.
When a task issues an EHQ (RET=TEST) the task is placed in a wait until

return codes are received from the other system. This type message contains

the return codes.

13. RESOURCES ACQUIRED - Denoted by X'18' in Q-msg type field. Length is
%é bytes.

When a task issues an ENQ (RET=HAVE, or WAIT), the ENQ message is sent

across. The task is then placed in a wait state by placing a QEL on

“SYSOTHER" chain. When the other CPU has ENQ'd all the resources in the

1ist, it sends back a resources acquired message to inform the originating

CPU of its success. The "SYSOTHER" QEL is then DEQ'd.

14. NULL MSSG FOR SEQUENCING - Denoted by X'1C' in Q-msg type field.
lé '

Length is & bytes.

This message type is currently not being used.

-36-

SHRENQ Proclib Procedures

The following JCL statements must be installed in SYS1.PROCLIB with
IEBUPDTE. This procedure is used for SHRENQ system task and must
be named SHRENQ.

// PROC p=SNQSUPER,R=16,CTC=501

// EXEC PGM=&p,REGION=&R.K

//STEPLIB DD DSN=TSPC.SHRNQLOD,DISP=SHR

// DD DSN=T.CTCAM.LOAD,DISP=SHR
//CTCUSERZ DD UNIT=&CTC

//SNAPDD DD SYSOUT=A,SPACE=(TRK,(1,200))
//SYSABEND DD SYSOUT=A,SPACE=(TRK,({1,200))

Symbalic parms 1nulude:

&P which is for testing only, Default is SNQSUPER
&R which is Region Size, Default is 16K
&CTC which is unit address of the channel-to-channel

adapter. Default should be the address for the
system in which this procedure resides.

DD Cards Include:

STEPLIB Must define the load data sets for SHRENQ Load
Library and CTC Load Library.

CTCUSERZ Must define CTC unit

SNAPDD Used for Snmap Dumps

SYSABEND Used for dumps.

-37-
ATTACHMENT I

RETURN CODES AND POST CODES TO CTC USERS

RETURN CODES

The following is a list of return codes from various CTC user modules. All

return codes are right justified in register 15.

CTCOPEN
0 - DCB opened successfully - Y user already open
4 - DCB opened successfully - Y user not open
8 - CTC not available for this UCB
12 - UCB specified is not a CTC UCB
16 - Another user is already open on this UCB with the same user id
20 - DDNAME is not in TIOT
24 - DCB already open.

READ/WRITE

0 - READ/WRITE scheduled successfully

4 - User not yet open in Y

8 - CTC to Y down

12 - Unable to schedule multiple READ/WRITE
16 - CTC in X not started on this UCB

20 - Open has not been done on this UCB

24 - Invalid DDname

28 - Can't handle zero length buffer

Work Section:

REF: CcO0-0P-017
ISSUED: AUGUST 15, 1975
ORIGINAL

Page 1 of 7

Computer Center Operations
Work Procedure

Computer Operations

Subject: CTC and SHRENQ

Background:

Channel-to-channel (CTC) is an access method which provides
capabilities for Inter-System CPU Communication. Shared ENQUEUE
(SHRENQ) interfaces with CTC and is designed to replace the
reserve of a complete volume with an ENQ across systems for only
the data sets required. CTC and SHRENQ are to be active during
all periods of production processing on the two systems desig-
nated for Commercial job execution. Additional information
about CTC and SHRENQ is documented in Standard 0il Company
(Indiana) Manuals CSD0082 and CSDOO84.

Purpose and Scope: These procedures provide instructions to start and stop

CTC and SHRENQ, and they explain recovery procedures for
those times when probiems are encountered with either CTC

or SHRENQ.
A. Starting CTC:
Master Console Operator 1. Starts CTC.
(System X)
2. Receives message 'CTCO08I CTC
SYSTEM IS STARTING'.
3. Notifies System Y to start CTC.
Master Console Operator 1. Starts CTC.
(System Y)
2. Recejves messages 'CTCO08I, CTC
SYSTEM IS STARTING', 'CTCI10Z2I
SYSTEM X CTC OPERATIONAL', and
'CTC1071 SYSTEM X CTC ACCEPTING
CMD'.
Master Console Operator 1. Receives messages 'CTC102I SYSTEM
(System X) Y CTC OPERATIONAL' and 'CTCI071
SYSTEM Y CTC ACCEPTING CMD'.
Master Console Operators 1. Acknowledge above messages and

determine which system will start
SHRENQ first.

Starting SHRENQ:

Master Console Operator
(System X}

Master Console QOperator
(System Y)

Master Console Operator
(System X)

Master Console Operators

Stopping SHRENQ (both systems):

Master Console Operator
{System X)

Master Console Operator
(System Y)

Master Console Operators

REF: C0-0P-017
ISSUED: AUGUST 15, 1975
ORIGINAL

Page 2 of 7

Starts SHRENQ.

Receives messages 'SHRENQO3 SHRENQ
STARTING' and 'SHRENGQOS SHRENQ
WAITING ON CPU 'Y' TO START SHRENQ'.

Acknowledges the above messages and
notifies Sy-tem Y to start SHRENQ.

Starts SHRENQ.

Receives messages 'SHRENQO3 SHRENY
STARTING', 'SHRENQO9 SHRENQ

WAITING ON CPU 'Y' TO START SHRENQ',
and 'SHRENQO6 SHRENQ READY'.

Receives message 'SHRENQO6 SHRENQ READY'.

Acknowledge message ‘SHRENQO6 SHRENQ
READY' and proceed with normal system
activity.

Notifies System Y of intentions.
Stops SHRENQ.

Receives message 'SHRENQ20 SHRENQ
FOLDS'.

Receives messages 'SHRENQO3 SHRENQ
STARTING', and 'SHRENQO9 SHRENQ
WAITING ON CPU ‘Y' TO START SHRENQ'.

Stops SHRENQ.

Receives messages ‘SHRENQOS SHRENQ
ENDING' and 'SHRENQ20 SHRENG FOLDS'.

Acknowledge the above messages and
determine which system will stop
CTC first. i

Stopping CTC (both systems):

Master Console Operator
(System X)

Master Console Operator
(System Y)

Master Console Operators

Lead Opérator

REF: C0-0P-017
ISSUED: AUGUST 15, 1975
ORIGINAL

Page 3 of 7

Notifies System Y of intentions.
Stops CTC.

Receives messages 'CTC1041 System
Y CTC IS DEAD' and 'CTCOO7I CTC
SYSTEM IS STOPPING'.

Receives message 'CTC1031 SYSTEM X
CTC TERMINATING'.

Stops CTC.

Receijves messages 'CTC1041 SYSTEM
X CTC IS DEAD' and 'CTCOO071 CTC
SYSTEM 1S STOPPING'.

Acknowledge above messages and
inform the Lead Operator that CTC
and SHRENQ are not active.

Insures that Commercial jobs are not
being processed in both systems
concurrentiy.

Stopping SHRENQ and CTC (System X only for IPL, IDLE, etc.):

Master Console Operator
{System X)

Master Console Operator
(System Y)
Master Console Operators

Master Console Operator
{System X)

1.
2.
3.

Notifies System Y of intentions.
Stops SHRENG.

Receives messages 'SHRENQO6 SHRENQ
ENDING' and 'SHRENQ20 SHRENQ FOLDS'.

Receives messages 'SHRENQO3 SHRENQ
STARTING', and 'SHRENQO9 SHRENQ
WAITING ON CPU 'Y' TO START SHRENQ'.
Acknowledge the above messages.

Notifies System. Y of intentions to
stop CTC.

Stops CTC.
Receives messages 'CTC103I SYSTEM Y

CTC ¢ DEAD' and 'CTCO071 CTC SYSTEM
IS STOPPING'. '

Master Console Operator
(System Y)

Invalid stops of CTC or SHRENQ:

1.

REF: C0-0P-017
ISSUED: AUGUST 15, 1975
ORIGINAL

Page 4 of 7

Completes the task for which SHRENQ
and CTC were stopped.

Receives messages 'CTC103I SYSTEM
X CTC TERMINATING'.

Acknowledges the message and resumes
normal processing activity.

CTC stopped on System X, while SHRENQ remains active on System X,

and both CTC and SHRENQ remain active on System Y:

Master Console Operator
(System X}

Master Console Operator
(System Y)

Master Console Operator
{System X}

Master Console Operator
(System Y)

Master Console Operator
(System X)

Master Console QOperator
(System Y)

1.
2.

Starts CTC.

- Receives messages 'CTCO081 CTC

SYSTEM IS STARTING', 'CTCI02I

SYSTEM Y CTC OPERATIONAL', 'SHRENQO3
SHRENQ STARTING', and 'SHRENQO9 SHRENQ
WAITING ON CPU "Y' TO START SHRENQ'.

Receives messages 'CTC102I SYSTEM
X CTC OPERATIONAL' and 'CTC1071
SYSTEM X CTC ACCEPTING CMD'.

1f message 'CTC099I WHAT IS THE
STATUS OF SYSTEM XXX-REPLY U, S,
OR D' is received, replies U.

Stops SHRENQ.

Receives messages 'SHRENQO6 SHRENQ
ENDING' and 'SHRENQ20 SHRENQ FOLDS'.

Receives messages 'SHRENGO6 SHRENQ
ENDING', 'SHRENQO3 SHRENQ STARTING',
and ‘SHRENQO9 SHRENQ WATTING ON CPU
'Y' TO START SHRENQ'.

Starts SHRENQ.

Receives messages 'SHRENQO3 SHRENQ
STARTING', 'SHRENQO9 SHRENQ WAITING
ON CPU 'Y' TO START SHRENQ', and
'SHRENQD6 SHRENQ READY'.

Receives message 'SHRENQO6 SHRENQ
READY'.

REF: C0-0P-017
ISSUED: AUGUST 15, 1975
ORIGINAL

Page 5 of 7

Master Console Operators 1. Acknowledge the above messages
and resume processing.

2. CTC and SHRENQ stopped on System X while CTC and SHRENQ remain
active on System Y:

Master Conscle Operator 1. Stops SHRENQ.
(System Y)
2. Receives messages 'SHRENQO6 SHRENQ
ENDING' and 'SHRENG20 SHRENQ FOLDS'.

Master Console Operator 1. Starts CTC.
(System X)
2. Receives messages 'CTCO08I CTC
SYSTEM IS STARTING' and 'CTC102I
SYSTEM Y CTC OPERATIONAL'.

Master Console Operator 1. Receives messages 'CTC102] SYSTEM

(System Y) X CTC OPERATIONAL' and 'CTCIO7!
SYSTEM X ACCEPTING CMD'.

Master Console Operators 1. Acknowledge the above messages and
determine the system to start SHRENQ
first.

2. Follow the instructions outlined in
B, above.

Abnormal termination of CTC (System X) with SHRENQ active:

Master Console Operator 1. Stops SHRENQ.
(System X)
2. Notifies System Y of problem.
Master Console Operator 1. Stops SHRENG.
(System Y)
2. Stops CTC.
Master Console Operators 1. Starts CTC and SHRENQ as outlined

in A and B, above.

NOTE: If SHRENQ will not stop on
a system on which CTC has
terminated, that system must
be IPL'ed.

Abnormal termination of CIC {System X) with SHRENQ not active:

Master Console Operator 1. Notifies System Y of the problem.
{System X)

Master Console Operator 1.
(System Y)
Master Console Operators 1.

REF: C0-0P-017
ISSUED: AUGUST 15, 1975

ORIGINAL
Page 6 of 7

Stops SHRENQ.
Stops CTC.

Start CTC and SHRENQ as outlined
in A and B, abaove.

Abnormal termination of SHRENQ (System X):

2.

Master Console Operator 1.
(System X)
Master Console Operator 1.
(System Y)
Master Console Operator 1.
(System X)
Master Console Operator 1.
(System Y)
Master Console Operators 1.

SHRENQ unexplained error:

Master Console QOperators 1.

2.

Notifies System Y of the problem.

Follows the necessary procedures
for the shutdown and IPL of the
system.

Stops SHRENQ.

Notifies System Y upon receipt of
messages 'SHRENQO3 SHRENQ STARTING'
and 'SHRENQO9 SHRENQ WAITING on

CPU 'Y' TO START SHRENQ' (NOTE:
AUTOIPL with start CTC and SHRENQ).

Starts SHRENQ.
Acknowledge message ‘SHRENQO6

SHRENQ READY' and resume normal
processing.

Stop SHRENQ as outlined in C, above.

Start SHRENQ as outlined in B, above.

CTC cannot communicate - System Y status uncertain:

Master Console Operator 1.

{System X)

Master Console Operators 1.
Master Console Operator 1.
(System X)

Receives message 'CTCQ99A WHAT IS
THE STATUS OF SYSTEM XXX - REPLY
U, S, OR D',

Determine reason for receiving the
message, attemp to correct.

Replies U to each occurrence of
message 'CTCO99A' for 10 minutes.

a. After 10 minutes, replies D
to the message.

Master Console QOperator
{System Y)

Master Console Operators

Master Console Operator
(System Y)

Master Console Operator
(System X)

Master Console Operators

Special instructions:

Master Console Operators

*hkkk

REF: C0-0P-017
ISSUED: AUGUST 15, 1975
ORIGINAL

Page 7 of 7

Stops SHRENQ.
Stops CTC.

Informs System Y of the above
actions.

If the System is recovered, receives
message 'CTCO99A WHAT IS THE STATUS
OF SYSTEM XXX - REPLY U, S, OR D'.
Replies D to the message.

Stops SHRENQ.

Stops CTC.

Start CTC and SHRENQ as outlined in
A and B, above.

If System is not recovered, message
"CTCO99A' will be received {AUTOIPL
will have started CTC and SHRENQ.).

Replies D to message.
Informs System X of status.

Starts CTC and SHRENQ.

Acknowledge all CTC or SHRENQ
messages to obtain successful
communication and resume processing.

Hold the Queue whenever any CTC
or SHRENQ problems are encountered.

Record all stoppages or termina-
tions of CTC or SHRENQ immediately
in the System Incident Log.

Accumulate documentation and support
dumps for all problems and route
them to the Center Support/Center
Maintenance Group.

