SHARE. PROGRAM
LIBRARY AGENCY

HHHHHHHHHHHHH

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
5555555555555

SHARE PROGRAM LIBRARY SUBMITTAL FORM - - SHARE PROGRAM LIBRARY AGENCY
: : Triangle Universities Computation Center
Post Office Box 12076
Reasearch Triangle Park, North Carolina
27709 UsAa
Attention: Mr. Joe Ragland

SPLA CONTROL NUMBER:

This form shouid be completed and submitted with the program package to the SHARE
Program Library Agency at the address shown above. Standards and instructioms for
submitting programs are in the "SHARE Program Library Standards Manual'.

(1) Program Number (to be filled in by SPLA) ..vuves 36¢D“O3, G, BIAA_
(2) System Type (machine) ...eeveeeonnssanane R IBM S_360 or 51370
(3) Search K&y ..covavesvncane Ceersereraanns DECISION TABLE TRANSLATOR BASED

 (4) Programming Languageeeeeecessereees PL/1
(5) Author's Name and Address-... cevn

Dr. Kenneth Conrow
Computing Center
Kansas State University

- Manhattan, K§ 66502
(6) Direct Inquiries to Name and Address.
{(if different than Author)

same

(7) Title of Program DEGTAf.B, A peclsion Table Transletor Based
on List Processing Technligques

(8) Submitter's Installation Membership Code.voeennn 51099
(9) Submitter's Own Program 1dentification and Suffix(Optional)... 03.6 .003
(10) Primary Subject Code...... heseveismmarasunans ceessssesensaran 03.,6

(11) Operating or Monitor System Required MFT3; minor changes only for MVT,VS3
(12) New or Revision Code (if revision, show prior Program Number in Item 1).. neaw

(13) Year Completed.....-cocevees J creeee terersanareanne S reeensessnon 1973
(14) Date of Submittal.i...ccoseso-usns ersaeeeesteannanes hecoseornas an 1
(15) Documentation (number of original pages submitted).............. 7

(16) Abstract (should contain sufficient information for a reader to determine
the value of the program). Listed on the reverse side of this form are
subjects which may serve as a Wﬁvfpr..a‘descriptive abstract.

DISCLAIMER

Trdangla Univenstties Computation Center (TUCE)
perves solely as the distributlon agent for conlrinrted
programs and does nol test or maintain them. They
ere distributed’ assentially in the orininal form sub-
mittéd by the author. MNeither TUCC nar EHARE, ILC,,
makes any warranty, expressed or implied, as to the
documentation, function, or performance of the con-
tributed programs. '

SHARE PROGRAM LIBRARY SUBMITTAL FORM

SHARE PROGRAN . =

Subject Guide:

Purpose

Programming Language used

Version and modification level or release number
Field of application '

Type of routine (main program, gubroutine, etc.)
. Specific description of machine requirements.

Hhd D TR

ABSTRACT DECTALB, & DECislon Table ALgorithm Based on 1list processing

echniques,ris a translator which converts programs or program segmenté

itten in decision tables into compilable PL/I coding. The use of a

Hirectory vector to control executlon ensbles complete elimination of

] duplicaté coding of stubs, complete freedom of reuse of stubs throughe=

hut 8 DECTALB block, and automatic rearrangement of condition stubs to

oduce the overhead of rule selection. The executlon time control

F;ction is'so simple that it adds very little overhead at execution

kima. The version sybmitted is the bhootstrap which was employed to

Fmplement a more complete system. The bootatrap implements the basiec

F;atures mentioned abdve but does not incorporate alaborations like

krocessiﬁg extended entry decislon tables, provisioh of diagnostics,

F;d acceptance of control options. DECTALB 1s written in PL/I, was

hﬁbuggad on the Level ¥ compiler under MPT, and has been shown to

work using- the Optimizing compiler, It w11l run on gystems supporting

PI/I Level F. DECTALB is supplied as a PL/1 source deck of about

800 statements,

(Please attach additioﬁal pages 1if necessary)......-..Total pages attached

Permission to Publish

"I hereby give the SHARE-Program Library Agency permission to reprint, re-
produce, and distribute this program.”

(17) Signature of Submitter and Date ' - (LafvéyAr N cj;LM\ AL 7
> S .

(18) Signature of Installation Addressee_ S’ ﬂ ' / W& '7’/ 7 fo

11-2

The documentation accompanying this submission of DEGCTALB
is in two parts., One part is e paper describling the academicelly
inperesting gspects of the design and implementation of DEGTAL.,
The other part is 1in the nature of a user's guide, detalling the
information which the user will require in order to use the
programn successfully.

The accompanyling listing of the source code for DECTALB was
mede using NEATER, our PL/I Source statement Reformetter
(SHARE 360D~03.6,018; CACM 13(11), 669(1970)), Hence the listing
does not correspond in format to the dard images represented on the
source tape. The indentation according to logical structure and the
splitting of words at the end of line result from NEATER running

with PRINT only enabled.

ll=3

DEFINITIONS

we find that we employ the following terms in describing
DECTAL and its mechanisms.,

'DECTAL' is used generically to refer both to the bootstrap
program, DECTALB, and to the complete version produced with the
aid of the bootstrap. A specific reference to DECTALB makes an
assertion applicable to the bootstrap, but not to the complete
version of DECTAL.

An activity is any passage of PL/I coding accessible via an
element of a label vector in the DECTAl output. There are two
kinds of activity: task activity, which is activity specified in
the stubs of the user's decision tables, and control activity,
which is activity supetposed by DECTAL in order for it to control
the execution of the user's decision tables.

A DECTAL block is % collection of decision tables which are
processed as single batch by the DECTAL translator, Complete
freedom of cross referencing of statements and accessing of tables
exists within a DECTAL block, but no such cross referencing and
table accessing can be done to another block, which, after all,
is translated separately.

In referencing specific tables or task activities, the notation
Axx (actions), Cxx {(conditions}, or Txx {tables) is employed. 1In
each case, the xx denotes a two digit decimal number which is unigue

in its environment.

A A 2

ALGORITHM AND CONTROL MECHANISM

The translation algorithm and the details of the control
mechanism at execution time are described in considerable detail
elsewhere. To sum it up extremely briefly, a directory vector
is used to control flow of execution among task activities and
control activities using a subscripted label vector to access
each one as required by the input tables and the execution time

situation.

INPUT TO DECTAL

Block and Table Level

DECTAL is designed to permit its user to insert DECTAL
blocks into normal PL/I source coding whenever it appears con-
venient to his purposes (except, for reasons given below, that
only one DECTAL block can appear in a PL/I PROC or BEGIN block).
DECTAL blocks have the same properties as PL/I BEGIN blocks in
regard to flow of execution: they are entered by "falling into"
them from the top and, when decision table execution is complete,
the normal PL/I coding after the DECTAL block will be given control.
Bach DECTAL block is delimited by an *DECTAL card at its
beginning and an *END card at its end. A DECTAL block consists
of one or more decision tables. PL/I statements appearing between
the *DECTAL card and the first Txx card are transmitted to the out-
put stream without inspection or modification. Declare statements
for the user variables of the decision table block may, for example,

appear here. Any executable statements in this environment will

I1-5

" be executed.before the DECTAL control mechanism takes over, which
occurs at the position of first occurrence of a Txx statement in
the block. The first table in a block is given control at
execution time at its initializing action statement (if any)
or at its first condition statement (if there were no initializing
actions). Flow of execution among the decision tables of a block
is controlled by translator statements appearing as action stubs.,
Hence, any table in the block other than the first must be
explicitly accessed by translator statements.
Each decision table is delimited at its beginning by a TXX
card and at its end either by the Txx card of the next table or
by the *END card of the DECTAL block. FEach table consists of
jnitializing actions (if any}, a rules card (optional}, condi-
tion statements (if any), and conditioned action statements (if
any), generally in that order. Comments may be interspersed
among these statements, and there is some freedom of placement
of the rules card. A table may consist solely of a series of
initializing actions, in which case it is simply an action table.
Initializing actions for a table are entered as Axx stubs
in the usual way, but no entries may appear for them. 1Initializing
actions are fully cross~referenceable, just as are all other actions
and conditions. The end of a set of initializing actions is recog-
nized by the appearance of the first condition stub. The rules
card may appear before, among, Or after the initializing action
cards, but must appear prior to any condition statement. Any

action statements which appear after one or more condition state-

I1-6

ments are conditioned actions and must have action entries
associated with them. All condition statements in a given table
must appear in a group uninterrupted except possibly by comment
cards.

The rule card (R) gives the user the opportunity to number
his rules and specify the presence or absence of an ELSE rule
in his table. If no rule card appears for a table, the rules will
be numbered sequentially from left to right, beginning with 1.
The rule card entries may be one or two digit numbers, separated
either by blanks or commas. An ELSE rule, if any, must be the
last rule to appear in a table. Its presence is signaled on the
R card with an 'E' or the word 'ELSE'.

If an R card (rule card) was given, then the number of con-
dition entries associated with each condition stub must equal
the number of rules (other than the ELSE rule) on the rule card.'
The number of action entries associated with each action stub
must equal the number of rules on the rule card {including the
ELSE rule). If the ELSE rule was not specified, then.the numker
of entries on both the condition and the action cards must be
equal to the number of rules on the rules card. Since DECTALB
has no diagnostic capability, the consequences of breaking the
rules are unpredictable., If no rule card is given, the number
of entries in the first condition statement will be taken to
define the number of rules, and the presence or absence of an
additional entry in the first action statement will he taken

to define the presence or absence of an ELSE rule.

LT

Comment cards (#) may appear at any point in the translator
input. They do not interrupt blocks of cards constituting a
statement, but are transmitted without inspection to the printed
output on a whole-card basis. A gseries of comment cards must all
bear the # signs in column 1. Target language comments which
are intended to appear in the compiler input must not contain a #
in column 1, as this causes them to be diverted fromlthe compiler
input stream. Target language comments imbedded in target lan-
guage statements are transmitted without change. DECTAL comments
and stubs or entries cannot co-occur on a single card, except that
comments can intervene between a translator statement and any

entries associated with it (see below).

Statement Level Input Format

The overriding consideration is to have a maximum of freedom
in the input format, so that little care need be taken in for-
matting of the decision table statements for input to the processor.
The stubs are written in the target language (i.e. PL/I): since
the processor transmits the stubs to the output stream without
change beyond surrounding them with strings which implement the
decision table control mechanism, the free format properties of
the target language are maintained in the stubs.

Either column 1 or columns 1-3 are used to identify state-
ments for the processor. All cards except T, A, or C card employ

only column 1; T, A, and C card employ columns 1-3. Columns 73-80

are reserved for identification sequence fields. The remaining
columns, 2-72 or 4-72, are available for use for input text.

The characters which may appear in column 1, and the meaning
of each are:

*: Block delimiter card.

Ccard for table initiation.

each must be followed
by a 2 digit decimal

Card initiating a condition statement gumber in cards 2 and

Card initiating an action statement.

Translator comment card.

m o o#= 0 P 4

Rule card (optional).

blank: A continuation card.

On T, A, and C cards, the two digit decimal number in coclumns
2 and 3 must uniquely identify that statement in its environment,
For example, only one T03 can appear in a given DECTAL block; only
one A05 can occur in a given table; and only one Cl3 can occur in
a given table., (Note that this intrinsically limits the number of
tables in each DECTAL block, the number of actions in each table,
and the number of conditions in each table to 100. More severe
limits are imposed by dimensions in certain declare statements
of DECTALB; see below.)

In condition and action stubs, the first character of the stub
may appear in column 4 or any succeeding column.

The condition stub must contain the target language keyword
"I{F', This requirement enables pre-condition actions. The pro-
cessor will supply the 'THEN' keyword of the PL/I target language.

Tf continuation cards are required by a lengthy A or C stub
and entry, a blank appearing in column 1 of the following card

signals the continuation. The text may be continued from column

1L-9

2. A change in statement will be recognized only when a non-

blank symbol appears in column 1 on a later card.

SPECIFICATION OF TABLE ENTRIES

| Table entries are made on A and C cards (or their continuations)
following the stubs to which they apply. The table entries are
separated from the stubs with the delimiter '::'. Arbitrary blanks
may be included before or after the double colon and before, among,
or after the entries. Among the condition entries, only the sumbols
vy, 'F', 'Y', 'N', and '-' are acceptable to DECTALB. ' and ‘Y!
equivalently define an entry in a rule which may be employed if this
condition is true, and 'F' and 'N' equivalently define an entry in
a rule which may be employed if this condition is false. A '-'
('don't care') indicates that this condition is irrelevant to the
rule.

Among the action entries, 'X' and '-' are the acceptable
entries. An 'X' indicates that the action is to be taken if the
rule is selected, and a '~' indicates that the action is not to
be taken if the rule is selected.

Note that all entries, including don't care and no action
entries, must be explicit (by use of hyphens). Blanks are never
interpreted as entries.

No symbols other than X may appear in action entries to
specify that a given action stub is to be executed in a rule. If
it is desired to modify the order of execution of the action stubs,

the modification should be effected by using translator cross

reference statements which reference action stubs within the same
table. For example, if the action stubs A,B,C were to be executed
by three different rules in the orders A,B,C, B,C,A, and C,A,B,
this could be accomplished by inclusion of two cross references

in the action stubs as briefly indicated below.

1l 2 3
*C - - b
A X - X
B | X X X
. : X p -
*3 - X -

Translator Statements

Pranslator statements appear as condition or action stubs to
specify that the translator is to take some action relevant to
control of the execution flow of the processing of the decision
tables. FEach translator statement encountered at translate time
is interpreted and appropriate entries made in the directory vector
to implement the activity specified. Translator statements may
provide cross-references to other stubs in the DECTAL block or may
cause invocation of another or the same table in the block. Note
that if the user wishes to take advantage of the control mechanism's
capability of eliminating replicate coding of activity stubs, he
muét provide cross-references via translator statements, as the
translator does not seek to identify identical stubs for itself,

The translator statements supported by DECTALB are:

e MRt e e & e L

AdTLL

Axx *PRAXK AxX *STOP

Cxx *TxxCxx : AxXx *REGOTO Txx
Axx *GOTO Txx AXX *RECALL Txx
AxXxX *CALL Txx Axx *REGOAGAIN
Axx *GOAGAIN :

(The *RETURN function is available in the bootstrap only impli-
citly as the result of completing the action list of a rule
which contains no explicit transfer of control.)

As is self-evident, every translator statement begins with an
asterisk. The statements Txx(A|C)xx are cross references. They
indicate that the task activity desired here is that specified in
the table and task activity statement cross referenced. Cross
references must be made to actual task activity, not to other
cross references or to other translator statements. Cross refer-
ences may be either forward or backward in the decision table
block. All translator statements must appear on a single card
without continuation cards.

*CALL is used to invoke a table with planting of a return
link; it is used when return to the next action in the current
rule is anticipated. *GOTO is used to invoke a table without
planting a return link; when it is used there will be no way to
return to the current rule after the invcked table has completed
its execution. RE is prefixed if the talle is to be entered at
the point of its first condition testing (the implication being
that the table was previously entered at its initializing actions
and that their repetition now is inappropriate). AGAIN is added
as a suffix to specify a new invocation of the table in which the

translator statement appears. *STOP stops execution of the DECTAL

- e e

block and yields control to the statement following the *END
delimiter of the DECTAL block.

In translator statements, the * may appear in column 4 or
in any succeeding column. Once started, the statements must
appear exactly as written, with no extra and no few blanks after
the *,

The space between a translator statement and any entries
may be employed for comments; it will not be inspected by the
translator. It is convenient to use this space for documentation.
A cross reference cr an invocation of another table may be ex-
plained in context by indicating briefly what action that refer-

enced task activity or table implements.

Debugging with DECTALB

Since DECTAL transmits the strings which constituted the
user's stubs to the compiler, any PL/I syntax errors in the stubs
will be the cause of diagnostics issued by the compiler. Since
DECTAL has modified *he program organization, some method of
linking compiler diagnostic messages back through the DECTAL
output to the decision table input is desirable to assist in
location and correction of errors at this level. The method pro-
vided for this utilizes PL/I comments placed right after the
statement label which labels the code transmitted from each
decisicn table stubh. The contents of the comment are the Txx
(A|CYxx encodement employed in translator statement cross
references. Thus, if the compiler gives a diagnostic in statement

m, and the comment last appearing before statement m in the DECTAL

I1-13

output is /*T45C06*/, then the correction must be entered in
condition 6 of table 45, The relatively compressed format of
DECTAL;S output to the compiler should not be permitted to be a
detriment to the use of the system: the discovery and correction
of errors should all be done at the decision table level (as
accessed, when required, via the /*Txx(A|C)xx*/ comments as
just explained) and little or no time should be devoted to in-
specting the organization of the coding which the compiler is
presented with. Since DECTAL's printed output is a carefully
formatted version of the inputted decision tables, debugging at
the decision table level is greatly facilitated.

The diagnostic capabilities invested in DECTALB are ex-~
tremely limited. Many diagnostic capabilities had been visualized
at the time the bootstrap was being written and comments indica-
ting their nature and/or mechanism appear from time to time in
the bootstrap source coding. An ON ERROR unit in the bootstrap
will trap up to ten error situations detected at the hardware
level which follow from input errors and will cause the inputting
to be resumed at the next input card. This device, while not
ideally convenient, will serve to locate errors on a particular
input card aad to permit more than one error to be found in a
single DECTALR run. |

DECTALB does not accept control options at any level. It
assumes that all tables are CLOSED and supplies an implicit

*RETURN translator statement to any rule which does not close with

an explicit transfer of control translator statement. All
tables are regarded as not—~ORDERED by DECTALB. Hence, whatever
applicable rule first emerges as a pivot rule will be selected
for exacution by DECTALB even if ancther applicable rule appears
to its left in the decision table.

Interactions of DECTAL with the PL/I Compiler; Efficiency
Considerations

The DECTAL control mechanism employs a number of variables
for its purposes. Each of these variables starts with the symbol
'4'. The DECTAL user can therefore safely avoid inadvertant double
use of variable names by simply aveoiding the use of variable names
beginning with this symbol. If a user has employed variables
beginning with this symbol and has explicitly declared each one,
then the compiler will produce a diagnostic to the effect that a
variable has been multiply declared, and the user will be informed
of the interference between the DECTAL control mechanism and the
task activity.

The DECTAL block is the unit within which cross references
and table to table transfer of control may be made. The DECTAL
control mechanism is therefore created afresh for every DECTAL
block entry. The fact that the DECTAL control mechanism has a
number of variables declared for its use implies that cnly one
DECTAL block may appear in a given PL/I BEGIN or PROCEDURE block.
If more than one appears, replicate declaration of control varia-
biles will lead to serious difficulty. Subject to this restriction,

DECTAL blocks may be used multiply in a given program.

II1-15

A certain amount of overhead is derived from the initiali-
zation of the values of the label vector which DECTAL employs to
control the flow of execution. We attempted to minimize this
overhead by employing a static variable for the label vector and
a switch which simply indicates whether the label vector has been
initialized, in order to avoid re-initialization whenever possible.
Nevertheless, it seems c¢lear that DECTAL block entry is a rela-
tively high overhead operation so that the user, if he can con-
veniently do so, would be-well advised to structure a program
so that DECTAL blocks are entered infrequently relative to the
duration of the entire program.

As a further means of reducing overhead, blocks of target
language statements which are always executéd together should
be grouped'together in a single DECTAL statement, Such a unit
requires only one label subscript and is referenced by only
a single element in the action lists of rules which invoke it.

If fragmented, multiple label subscripts and multiple elements
in action lists would be required, at a correspondingly greater
overhead.

Since utilization of the cross referencing of a stubs in one
takle from another table is anticipated to be the principal source
of reduction of object module size by use of DECTAL, and since in-
cludion of all related tables into a single DECTAL block will raise
the probability that cross references can be usefully employed,
and since, as mentioned above, initialization overhead will be re-

duced by entering DECTAL blocks infrequently, there are strong

pressureé for building large complex blocks. One feels almost
apologetic for this in these days of structured programming,

but we argue that the extra power and clarity of the decision
table mode of programming, and the diagnostic capability which
the full version of DECTAL will implement will more than compen-
sate for losses due to the pressures toward building large
DECTAL blocks.

When compiling DECTAL output of large decision table blocks,
it may be necessary to employ the External Dictionary PL/I com-
piler option in order to achieve successful compilation of the
DECTAL output, and to do the compilation in a large partition to
ensure use by the compiler of a sufficiently large text block.

The PL/I level F error message IEM1796I "ASSIGNMENT OF AN
ILLEGAL LABEL CONSTANT IN STATEMENT NUMBER xxxx" appears as many
times as there are elements in the label vector constructed by
DECTAL for execution time control. This message may be safely
ignored; correct c¢coding is compiled in spite of its appearance.
The condition code is returned with a value of 8 as a result of
this diagnostic; subsequent steps in the PLILFCLG procedure must
be permitted to run in spite of this diagnostic. The appearance
of this diagnostic was deliberately chosen as the least of various
evils. In order to make every 'GO TO # LAB (---);' in the execu-
tion control mechanism be executed by in-line coding, the compiler
had to be assured that the values assigned to the label vector
elements would be known in the current active block. This

assurance was given by deceiving che compiler by giving it a

raestricted list of local statement label constants in the declare
statement for the label vector. (The alternative of giving it a
full list of local statement constants is precluded by a list~
length limitation imposed by the compiler.) The compiler recog-
nizes that it has been given a value for assignment to a label
element different from those in the declare statement and issues
the diagnostic. The alternative of initializing the statement
jabel vector directly with LAB(i): prefixed appeared to generate
less efficient coding than the alternative chosen.

The PL/I Optimizing Compiler does not generate this error

message when it compiles the same DECTAL output.

JOB CONTROL LANGUAGE

Since DECTAL is a preprocessor for PL/I coding (it accepts
input in a form which is not acceptable PL/I and generates accep-
table PL/I source language statements from it), the usual mode
of employment of DECTAL will be one in which its PUNCH output is
passed directly to SYSIN of the PL/I compiler. The input stream

for the first sample job illustrates this usage.

Input Limitations

DECTAL blocks processed by the bootstrap cannot be so large
that either the number of directory vector elements or the number
of label vector elements becomes larcer than 929, The source of
the restriction is the three digit format in the DECTAL PUNCH file
which serves as PL/I compiler input and the restriction is rein-

forced by the initial value of MNADS in statement 11, If the

I11-18

number of entries in the translate time dictionary will exceed

300, the initial value for MNDICL in statement 11 must be increased.
As submitted, the bootstrap will accept up to 21 rules in

a table, and up to 50 stubs in a table. These limits may be

expanded by altering the initial values given to MNR (maximum

number of rules) and MNS (maximum number of stubs) in statement 9.

Changes in these initial values will change the amount of core

which DECTALB will require to run. The format of the printed

output line makes 42 the practical upper limit for the number of

rules in a table.

Resources required for DECTALB

The submitted bootstrap consists of 803 PL/I source state-
ments. Tt compiled in 0.053 hours on an S360/50 in a 128K
partition, using version 5.4 of the F-Level PL/I compiler.

In typical short test runs, DECTALB ran in 68K of core.
It transfermed decision tables in 1/2 - 1/3 of the time it takes
PL/I-Level F to compile the transiormed output.

Standard configurations supporting PL/I should support
DECTALB without difficulty. A card reader, card punch, line
printer, and direct access auxiliary storage suffice to support

the system as we have used it.

ACKNOWLEDGEMENTS
The authors are indebted to Dr. Tom L. Gallagher and Mrs.

Elizabeth A, Unger Ior calling their attention to this problem,

and to the Kansas State University computing center for support

during its prosecuticn.

II-2v

J/DVECTAL, EXEC PoM=DECTALD
JZSTEPLIR DD NDSN=COWAN] JODECTAL.DISP=SHR

J/PRINT 10 SYSMHIT=A e
J/ZPUNCH DD UNTIT=SYSDA,DSN= GENECOUT yDTSP=(NEW, PAQS);SPAFE‘(TRK;(lq?)l; X
/7 DCR={RECLFM=FH,LRECL=RBO,BLKSIZE=480)

//SYSPRINT DD SYSOUT=A e e e = e+ e

F/RRRETILE DD SYSONT=A

//SYSIN N %

DECTEST:PRAOC NPTIONS(MATN) S e - -
NCL CS?2%A BASEN(PT) CHARI(256);
DCL (RIRTHSLKEERP){N:2255) CHAR(1):
DCL (HIGHC,LOWC)ICHAR{Y)3 "
DCL NAME CHAR({12) INIT('BIRTHS DS 0G'):

*DECTAL
TOL o e _ _
THIS PRDNDUCFS THE TRANSLATE TARILES FOR THE GAME OF LIFE, SEE
SCTENTIFIC AMERIGAN, NCTNARER, 1971 ET SEO,
HTHE TRANSLATF TARLES wWOULD RE USED IN A BAL IMPLEMENTATION OF _THE GAME
#OBRIFFLY, CELLS SURROUNDED RY 3 OCCUPIED CELLS (ZODLLECTED AS THREE RITS
IM A BYTE REPRESENTING THE NFIGHBORHIOD SITUATINN) GIVE BIRTH IN THE
NEXT GENERATINN,
HCFLLS SURROINPDED BY 314 NEIGHBORS KEEP ANY OCCUPANT CURRENTLY PRESENT.
ALL NTHER CFLLS ARE EMPTY I[N THE NEXT GENERATION,
CAOD UNSPEC(HIGHC)='11111111'83 UNSPEC(LOWC)=*00000000"'R;
KT LN NP=0:
R 01 02 03 04 05
€00 TF F=8::TT-ST
CO1 IF K=33$:TF-—~
CO?2 IF K=4::FT——
€03 IF K>&i1:-FTFF
TC04 1R KC3iFF-=T
AD1 RIRTHS(N)=HIGHG: 1 X==wm
AD? KEEP(N)=HIGHE T tXX—m~ o
AD3 BIRTHS(N) KEEP (N)=LOWC S ==X=X
AO7 BRIQTHS(N)=1LNWC S ¢t =K==
A4 N,NP=N+1: [F N=25A THEN GO TO SPT: _K___I=O.::xx>(-:_>{w)
ADS NP=NP+MP: I=1+1: IF NP>255 THEN D0O: K=K+1; NP=NP-25h3 END: It =——X-
ADE #HREGOAGAIN 23 XXXXX
- *FP\;[—) e e = [T - — . e ———
SPT: PT=ANDR{RIRTHS (O}) : C '
OPEN FILE(SYSPNCH) STREAM OQUTPUT TITLE('SYSPUNCH!?)
SPUT: PUT FILE(SYSPNCH) EDIT (NAME){A(RO));:
PUT FILE(SYSPNCH) FDIT ((V DG Cr V1, SURSTR(CS25A,1464) 1 VT DI}
I=1 TO 200 BY 6431) (A(A),A{RLG),A{10)):
I SURSTR{NAME,]1,1)=98" THEN
DO ' T T
PT=ADDR(KFEP (0})3
NAME='KEEP NS 0OC 3
a7 sSeuT: CoTr ~ o

ENIY:
END NECTFSTS
/7CLD FXEC PLILFCLD,TIME=(,10),00ND={G,LTY, o T X
/7 PARM,,PLIL="A, Xy NST,,SKS,STZE=124K Y, X
7/ PARM , GN='5T172F=500001

J/ZPLILGSYSIN DD DSN=x DECTAL .PHNCH,DTSP= (01D, HEIFTP)
F/GOLERRETLE DD SYSDT=A
/x :

Tnput stream for sample problem nlisting of Wila h of submittal
tape.)

II-¢21

*wajqoad sydues woay u:aunm» 9IVI0IQ pa3uTag

NITL VLD D

CONI 29GZ—dN=dN ST+M=M 20U NIHL §G2<dN 41 fT1+I=1 *daN+dM=aN
x - X X X C0=1%3 '1dS UL 09 N4HI 96Z2=K 3l :i+n=dh*N
- - - X

$OMOT=(N)gIIN (NISHIETE

CIHOTR=(N) 433
s IHOTH= (N SHL¥IE

11
i
i
_ i COMGTI=INYSHLELE
bl
il
bl

i - - 4 3 1T - T S Tesw o410 T T
4 4 1 4 - b Yo 41
- = - 1 4 | o R EED)
- - = 4 1 i €= 41 S
L 4 - 1 1 it =1 =l
$3 %0 €0 20 10 - o .) ‘ - -
tO=al NG T
$6,00000000,=(12M0F)I5dSNN S TTTITTIITa=(2HOIH}DSHEND
*NOL1AVEdNIY IXdW 3HL NI Alawd 3av SH13D w2hla V4o #
SIN3ST5d ATINIGANT LNVAN)IOT ANV d3=M SeUGHYTIN 1€ Ay J20NH08aNS STM20% B
*NGILVEINTY LXEN &
SHL WD HESIY 3AI9 (NOLLVALIS ONOAMIEHYLIIN 3HL UNTINZS3wedz 3LAY v Wl 4
Sild I3uHL SY JIEJ3TI072) 537130 031dN27 & A Cludnagdns 573120 *A153198 8)
Ta79 IHL 40 NOILVINIWINdsl IWE ¥ N1 GISN 349 ¢INn0M S378vL FLVISNUEL SHL#
*G3S 47 TieT “MHECLI0 *NYyIi¥3wy DI4IINIISS
S3S 95517 35 9n99 3H1 904 SA1UVL 3LvISNVAL Ihl S3ONUles SIHL B -
JIdING 8NLs 43X

11-2p

DECTEST:PROC APTIONS(MAINY

DCL CS5256 RASED(PT) CHAP(256):

DCL {BIRTHS ,KEEP)I(0:255) CHAR(L):
NCL (HIRHC, LIwWC)CHAR(L) §

DCL NAME CHAR(12) INIT(*HIRTHS DS OC'}:
6N TN #STLRT;

|
F
|

001 :/*TO1AQO® / UNSPECIHIGHCI=*111L1111'8% UNSPIECILOWCI=*0CROGCCC TR, 1

Ke Ty Ny NP=2:1GOTT BNEXT #0002 /%TQLC 00/ If 1=8 THEN GOY0D 4TPHE;GOTE # 2
CFALSE; #0032 /%TO1COL %/ [F K=23 THEN GOTO ATRULIGIATO #FALSE; 40042 /*T01 3
ALY I[F K=4 THEN GOTO HTRULIGOTL #FALSEIACCS:/7=TO1CD3%/ I K>4 4
THEN GUTI WTFUEIRTITO HFEALSE: #0063 /2T01C04% / 1IF K<3 THEN GNTO #TRIIFE 5

. 3GOTO #FALSESH#007:/>TOLAOL%/ RIQTHS(M)=HIGHL: GITG #NGXTi#008: /*TR1A &
02/ KEEP{MN)=HTOHGS GATO ¥NEXT;6009:/=T101AN3%/ BIRTHS {N) yKEFP(N) 7

=L OWCIRNTN ENEXT3 4010 /2TNLA0T/ BISTHS{N)=LOWC; GOTC SNEXT3H#011:/% e
_Tolanax/ NGNP=M+11 TF N=256 THEM GU T S5PT: K,I1=03 60TO #NEXT;4012:/ c
®TOLAQS%/ NP=NP&NP; [=1+13 IF NPD>265 THEN D03 K=K+1: NC=NP-2563 ERD:G 10
0T #NEXT; 11
8 N L lc
HGOTO: HCPT=H#ODIR{RDIF(ECOT))+l 13

GO TO H#LAR{4NDIR(4CPT~1)})3 14

U ENEXT: HCPT=#CPT413 15
GI T HLER{HDIE(4CPT=~1)1}: ' Y

AFALSE: HCPT=8CPT+2; 17
#TRUC: #NXT=#DIR(HCPT) 18
S CTHCPT=EDIR(ECPT+1): 15
GO TN H#LAB{HNXT); 20

#START: TF HSWT='1' THEN £0O; #SWT=t0Q7; 21
SLAS(1)=%001: $LAR(2)=4002: HLAB({ 3)=#013; HLAB(4)=H5541 22

BLAB(S}=4D05: 4LAB{ 6)=#008% #LAR({ 7)=4007; 4LAB(B8)=4#0708; 25

o HLARL @)=#00e: HILAC(10)=k010: 4LAB(11)=40113 #14RY 12)=4012; 24
1 AB(13)=4012 HLAR(C 14)=4%0143; ©NDj3 25

BCeT=13 GO TN QPHTQ. 26

NCL #SWT CHAR{L) STATIC INIT('1'), ¥LAB({ 14)STATIC LABEL(217
T T T S TAP T yHNEX T HFALST L H4TRUT) 28
NCL (YCPT, ¥NXT) BTN FIXED STATIC,H#LNK CTL RIN FIXTD, 25

_ HEDIR(49) AIN FIXED STATIC INTT(10

21 cO, /_1| 8! 111 .‘.3, ?‘Iv 10, 111 131 3! 111 131 3! 131 3].

3' 111 131 31 19 21 5' 267 5! 461 91 12' 6; 30, 9' 32

1?1 3y 3'?1 Gy 39, b4y 42, 0!7(}61 ?1 L 8y 8y 0;796, 33
e CIeE ¥ St w0 E = - =
#014: H 35

SPT: PT=AGGRIBIRTHS(0)):

COPEN FILE(SYSPNON) STEEAM TUTPUT TITLE (YSYSBUNCHTYS
SPUT: PUT FILECSYSPNCH) ECIT (NAME}(£(80))3
PUT FILE(SYSPNCH) ZOIT ((! DC C'17,SURSTC(CS256,1.64),' 01 DO

1= TPTZ200 BY 64)) (A(E) s AIERY ALY
IR OSURSTRENAME 3 1,1)='BY THEN
N0

COPT=RONR{KESPOY)
NAME=YKEEP NS QC
;N TWHQPUT

aNAE T
END DECTEST S

DECTALB output from sample problem; serves as PL/I source module,

11-23
Magnetic Tape Key

Volume prepared using IEBUFDTE
MR 7T RACK & DENSITY AS okDERED,
VOL=SER=DECTAL

DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

File 1 JCL cards invoking PLILFCL for compiling DECTALB
DSN=JCL1F EBCDIC
Sequence 00000010 and 00000020 in c¢cec 73-80

PFile 2 PL/I source of DECTALB
DSN=DECTALB EBCDIC
Sequence Q0000100 through 0001101C in cc 73=-80

File 3 LKED .SYSLMOD card establishing DECTALD load module
DSN=JCL1R EBCDIC
Sequence 00019900 in cec T73-80

File L Example deck, including all JCL to invoke DECTAID,
process the sample deck, pass the output to PL/I,
and execute the compiled program.

DSN=JCLZF EBCDIC
Sequence 00020000 through 00020550 in ce 73-80

A Decision Table Algorithm
Based on List-Processing Techniques

Ronald G. Smith¥*
Kenneth Conrow**
Kansas State University
Manhattan, Kansas 66506
ABSTRACT
A control mechanism utilizing list processing techniques
has been devised to facilitate the execution of decision tables.
A directory vector controls the flow of execution among condi-
tion and action stubs, from one table to another in a block of
tableé, and through whatever diagnostic modules might be regquired
in a given execution. The choice of stub for execution via the
directory vector implies that any stub need be coded only once in
the block of decision tables, with all other uses of that stub
achieved via reference to the single encodement., This feature
enables dramatic reduction in the size of an object module in
favorable‘cases. Translator commands effecting transfer of con-
trol among the several tables of a block of decision tables are
implemented within the directory vector, and invite more freedom
'in linking takles together than has been customary. Introduction
of a trace feature and various levels of diagnostic assistance are
likewise readily accommodaied.
KEY WORDS AND PHRASES: decision tablas, diagnostic aids, list-

processing application, system analvsis

CR Categories: 3.50, 4.19, 4.29, 4.49

*Computing Center
**Department of Computer 3cience, to whom :Ir;uiries should be addressed.

I. DEFINITIONS AND ORIENTATION

Decision tables provide a clear and compact medium in which
to analyze situations according to prescribed complex logical
criteria and to express the actions which result from a given
decision. We are concerned here with the description of a trans-
lator and an execution time control mechanism which will permit
coding expressed in decision table format to be compiled by a.
standard compiler and eventually executed to achieve the pro-
grammer's ends.

We will assume that the reader is familiar with the basic

(1,2) .,

vecabulary employed in discussion of decision tables
that he can, with the aid of Figure 1, tolerate omission of a
review of the basic vocabulary. We will give here a few orienting
definitions which go beyond the usual decision table definitions.
The basic control mechanisms utilized by this system could
be implemented in any of a variety of computer languages. The
language in which the stubs are expressed and whose compiler will
serve to convert the translator output into an object module will
be called the target language. OCur target language is PL/I.
Sections of coding in the decision table mode suitable for
processing by the translator will be referred to as decision table
blocks. Decision table blocks may be intermixed with normal target
language coding and have the same properties as PL/I BEGIN blocks
in regard to execution flow. Each block consists of a series cf

tables, and each table consists of a series of statements. Aspects

of the translator's activity may be controlled at the block level,

the table level, or at the individual statement level, so provision
is made for control options to be specified at each of these three
levels of control heirarchy (see Figure l). Each table and each

action or condition statement is uniquely numbered in its environ-
ment with a two digit decimal number denoted as 'xx'.

As the result of the translation process, each table is con-
verted into a binary decision tree and a set of action lists. The
binary decision tree is an implementation of the condition entries
in the table and its traversal at execution time will result in the
choice of some one action list corresponding to the rule selected
when a leaf node of the decision tree has been encountered.

A series of action stubs which occur prior to any condition
stubs in a table will comprise its initializing actions. Two
entry points are defined by the translator for every table. The
first entry point is at the first statement after the Txx card;
the second entry point is at the first Cxx statement. In the

case of a table without initializing actions, the two entry points

will coincide.

II. OBJECTIVES AND PROSPECTUE

The principal design objective was to create a decision table
translator which would permit the target language programmer to
employ decisinn tables whenever he felt it convenient. The trans-
lator was to provide as much flexibility as possible and as much
0

diagnostic assistance as possible. Naturallv, we also desired

to minimize repetitious coding of activity, and keep the translator

*<header keyword> <block options> (block header card)

. (series of related tables)
Txx <table options>
AxXX

M INITIALTIZING

* ACTION

STUBS

Axx
R) 1234 """ FE
Cxx _

. CONDITION STUBS CONDITION ENTRIES
Cxx
AxXx

. ACTION STUBS ACTION ENTRIES
AXX

. (more related tables)
*END {block trailer ‘¢ard)

Figure 1, Decision Table Format for
the Decision Table Translator

as small and efficient as possible.

In brief, decision table blocks can be inserted in a PL/I
source stream at arbitrary locations, and large PL/I source code
segments can constitute action or condition statements within a
table. The content of the stubs presented in tables to the trans-
lator are arbitrary within certain bounds. Loops and testing of
lowest=level conditions Qithin Axx statements in a table can be
coded directly in the target language. Similarly, actions can be
coded in a Cxx statement before 'IF (éxpression)'. These options
should provide enough flexibility for most user's needs. Note,
however, that decision table blocks cannot be nested, and that the
user cannot employ PL/I execution-flow-controlling statements to
transfer control between decision table statements because such
action would confuse the superposed deciéion table execution flow
control mechanism.

The basic design approach taken was to employ list processing
technigques both at execution time and at translation time, These
techniques enable achievement of the above goals and invite innova-
tion in providing new diagnostiec aids. It could be considered that
the list processing techniques employed here are extensions of King's

(4}

among the condition entries and

(5)

interrupted rule mask techniques
of Coulter's cross-linking of duplicate acticn strings.

At execution time, a directory vector controls the flow of
execution among condition stubs and action stubs. The majority
of directory entries are half word binary numbers which serve as

subscripts for a vector of labels which uniguely identify every

different stub in the set of input tables, Most of the remaining
directory entries are half word binary numbers which are subscripts
of entries in the directory vector itself and which permit transfer
of control within the directory. As a consequence, every choice of
a condition to be tested and every choice of an action to be taken
can be made completely independently of every other occasion on
which that condition or action might be invoked. Each different
stub need therefore be coded exactly once in the object module,
thus providing the desired minimization of object coding.

The use of the equivalent of subscripted label vectors in
other languages has been suggested previously in decision table

(6) though not in connection with a list processing

processing,
approach.

The advantage of list processing control via the directory
vector in enabling incorporation of diagnostic aids is manifested
in the diverse cases of a TRACE feature, a variety of possible
responses to redundancies and apparent and real ambiguities, and
a response to missing ELSE rules.

At translation time, the list processing techniques enable a
number of economies and diagnostics. One can visualize the pro-
cess of deciding among the rules of a decision table as equivalent
to the process of tracing a path through a binary decision tree.
The truth of some one condition stub is tested to divide the possi-
bilities into two groups. A second condition stub's truth ﬁhen
further subdivides the sub-tree. The repetitive testing of the

truth of stubs eventually selects rfor execution some one rule (in

a table withrall rules given and no ambigﬁities). The decision
tree is constructed efficiently at translation time by maintaining
the table rules in either a true branch list or a false branch list
stack. When abnormalities arise in the contents of a true or false
branch list, diagnostics can be issued.

Cross references from one stub to another are guickly handled
by binary search of a dictionary list and the resolutions entered
_into the directory vector;failures of resolution of cross references
are easily discovered for diagnostic purposes in a final scan of the
dictionary list. Provision of two standard entry points to a table‘m

and specification of the starting table in a decision table block

are also easily accommodated because of the list processing scheme.

III. THE EXECUTION TIME CONTROL MECHANISM
The flow of control at execution time utilizes a directory
vector (DIR) and a control pointer (CPT). The convention is
adopted (just as with the program counter in a conventional com-
puter) that CPT always points to the next DIR entry which is to
be used. Most entries in the directory vector are either a label
subscript or a control pointer value. The label subscripts permit
accese of activities (either condition testing or execution of
an action) which appear at a labeled location designated by the
value of the subscript. The CPT entries ir DIR permit control to
be transferred from place to place within the directory list.
Smooth transition among warious kinds of control activities
and task activities can be achieved by careful coordination of the
directory list elements and of the control section statements,

The key feature is the application of a subscripted label to certain

control sections, so that control activity can be initiated by
exactly the same mechanism that initiates task activity.

Although additional control sections will be required to
suppdrt the trace and execution time diagnostic features and
some of the basic control sections will need elaboration to pro-
vide diagnostic support, the essential simplicity of the execu-
tion time control mechanism will be evident.

Five basic control sections exist. The first three effeét
transition between control activities and are accessed via sub-
scripted labels so that these control activities appear in the
directory list exactly like task activities., The other two con~
trol sections effect transition between task activities and require
no sﬁbscripted labels. The five control sections:

1) call a closed table

2) branch to a table

3) return from a closed table
4) respond to completion of a task action, and
5} respond to completion of a task condition test.

Figure 2 should be referenced as these control sections are
described as it provides a diagrammatic representation of'the
context in which the various control sections operate. Although
the figure shows a complete table, each control sgection is
operative in only those restricﬁed parts of it where its mini-
strations are relevant.

Sequential execution of a series of actions is conceptually

the simplest. This employs control section 4. The action list

appears sequentially in DIR, so all that is required is augmenta-
tion of CPT after each action is completed. After each action is
placed: 'GO TO NEXT;', which serves to maintain the action list
execution mode. The control section reads: |
NEXT: CPT=CPT+1;
GO TO LAB(DIR(CPT-1)):

The last action in an action list in an open table is a
branch to another table. This involves control section 2. Thus,
the DIR entry immediately after the subscript of the 1as£ task
action is a '2', and the DIR entry after that is the indirect
address in DIR of the required table., Control séction 4 invokes
control section 2 just as it invokes any other action, but con-
trol is not returned to it this time. Control section 2 updates
CPT to the new situation, and reads simply as follows:

LAB(2): CPT=DIR{(DIR(CPT))+1;
GO TO LAB(DIR(CPT-1l)):

Similarly, if any action in an action list is a call of a
closed table, the contents of DIR(CPT-1) after control section 4
has been executed is a 'l' and the contents of DIR(CPT) is, as
before, the indirect address of the requirxed table. Control
section 1 need only make a record of the linkage required for
return before continuing with the activity of control section 2
which effects the actual branch. It reads as follows:

LAB(l): [NOL=NOL+1:; ALLOCATE LNK;
LNK{NOL)=CPT+1; LNK=CPT+1;

(Control section 2 immediately follows)

iv

(In the second alternative LNK is a CONTROLLED variable;
successive allocations are stacked automatically by PL/I.)

‘Return from a closed table is accomplished by inserting
at the end of every action list of a closed table a '3', When
control section 3 thereby assumes control, it recovers the link
and removes it from the link stack. Since closed tables can
only be called from action lists, it is known that continuation
in action chain execution mode is appropriate, so control section
3 is followed immediately by control section 4. Control section
3 reads as follows:

LAB(3): {CPT=LNK {NOL) ,} | {CPT=LNK; \k
NOL=NOL-1; FREE LNK;
(Contreol section 4 immediately follows)

The binary tree which must be searched during task condi-
tion testing is included in Figure 2. Every condition test
result can be either true or false, and so every one must per-
mit control to branch in either of two ways according to the
result of the condition test. This is accomplished in a series
of four DIR entries. The left pair of entries will be employed
if the preceding test was true, and the right pair wil; be employed
if the preceding test was false, The first entry in each pair is
an activity subscript which permits access of the next condition
or of the first action of an action list if a leaf node has been
reached; the second entry in each pair is a CPT value which points
to the naxt set of four DIR entries if testing must continue or to

the address 1n DIR of the subscript of the second action in the

1l

action list if the first entry was an action. Control section 5
monitors this activity and reads as follows:
FALSE: CPT=CPT+2;
TRUE ; NXT=DIR(CPT) :
CPT=DIR(CPT+1):
GO TO LAB(NXT):

At each subscripted label which contains a condition test,
the coding reads as follows:

'1F {expression) THEN GO TO TRUE; GO TO FALSE;',
where the 'IF (expressioﬁ)' was taken directly from the user's con-
dition stub. When return is made to TRUE, the control pointer is
already pointing to the correct doublet for execution of the next
condition test, so all that occurs is setting up of the control
pointer to the next condition quartet and branching to the point
where the test will be made. When return is made to FALSE, CPT
is pointing to the doublet for the TRUE condition and this must
be corrected by stepping it along two positions in the DIR vector.
After this is done, the same actions suffice to prepare for the
next test.

The transition between task actions and task conditions is
normally effected in both directions by letting the first item of
the new kind be addressed as if it were anéther item of the old
kind. (An exception will arise when an execution time message is
to appear.) Two examples appear in Figure 2. 1) The first action
of an action list appropriate to the rule selected appears in the
same position in a guartet as would still another condition.to be
tested. 2) After a series of initiating actioné for a table, the

last address is simply that of the first condition to be tested.

lla

T0I3U0D 2WTy
UOTINDSXT STqeL UOCTSTOSQ dY3J 3¢ uoljejussaaday d7Ivumei8erq ‘g =and1y

gv
1z Ly
[]
0TV ov
61V ¥
e . 7TV [Ad
LTV iy £V
9TV AN o1V A1
T 1 |
H 112 ; 01D _ 62 _ 89 P SIV 4 €Iv _ 6V d v
e ASTVI 3 é~— INJL— . S ISTVE 3 ——AMII— = ESTVI~> & dMYL— — 35TV — ¢—INYI—
\ ol J1 o S ol S
¢ ISTVA =) E—— dyl— , 38V ~p — ANJL ——>
) | & o 1] wi] - vl | 1vI

e USTIVAY UM ——

L&

It is the 'GO TO' statements after every condition and every action
which actually effect the transition in mode of operation by re-
turning control to control section 4 or 5 as appropriate.

Normal control activity may be recapitulated. In the action
list mode, single entries in DIR are accessed sequentially and the
mode is maintained by "GO TO NEXT;' commands at the end of each
action. In the decision tree mode, quartets in DIR are accessed,
but only the TRUE doublet or the FALSE doublet is employed, as
dictated by the result of the previous test. The decision tree
mede is maintained by the 'GO TO TRUE;' and 'GO TO FALSE;' commands
after each decision test. Mode change between these modes is
effected by encounter of a label subscript labelling the comple-
mentary activity, and the 'GO TO' at the end of the activity effects
the actual mode change. Control activity having to do with new
table access has been arranged to mimic task control activity by
providing these control sections with subscripted labels and
accessing them in a manner identical to the access of task activity.

The complete normal activity control section foullows:

CALL: LAB(Ll): NOL=NOL+1;
LNK (NOL)}=CPT+1;
GOTO: LAB(2): CPT=DIR(DIR(CPT))+1;
' GO TO LAB(DIR(CPT-1)):;
RETURN: LAB(3}): CPT=LNK (NOL) ;
NOL=NOL-1;
NEXT: CPT=CPT+1;
GO TO LAB(DIR{CPT-1));
FALSE: CPT=CPT+2;
TRUE: NXT=DIR (CPT) ;

CPT=DIR(CPT+1) ;
GO 7O LASB(NXT):

435

The extreme simplicity of the coding generated by PL/I
from this source coding reinforces the impression that the con-
+rol overhead at execution time for this list-processing approach
to decision table control will be negligible both in point of view
of time and space consumed. The PL/I label vector overhead is the
most serious source of concern.

It is evident from the foregoing that a given control section
may utilize an arbitrary number of DIR entries to accomplish its
task. The number it uses are skipped over by proper resetting of
the CPT value. This observation suggests that information other
than label subscripts or directory vector subscripts could be
encoded in the directory vector and skipped over by the invoked
control section. It is this technique which will enable imple-

mentation of trace and execution time diagnostic features.

v, TRANSLATION-TIME ACTIVITY: OVERVIEW
The translator consists of four main sections which

1) search for decision table blocks and interpret block options,

2) input decision tables,
3) create the required directory and dictionary entries, and
4) dump the execution time control blocks and directory

The first and fourth activities are performed once for each
decision table block. The second and third activities are per-
formed once for each table within the block.

Section 1) merely reproduces the input stream as output until
a block header card is encountered. Any block oﬁtions on this card
are interpreted, and following cards are throughput to the output
stream until a Txx card is encountered, at which time Section 2)
is given control.

Section 2} processes the group of cards which contain one
table before control is given to Section 3). A table is delimited
by a T card at the beginning and either a new T card or an *END
card at the end. This section reads the statement identifying
symbols, and causes them to be entered in the dictionary or re-
solved if they are already in the dictionary. It assigns label
subscripts to new statements. It prepares the entry table for
Section 3) and will issue diagnostics for irregularities in the
input table. Any extended entry statements will be recognized
and converted into a series of limited entry statgménts. All
printed and punched cutput produced specifically for this table
is produced by this section. Key information about the statements

of the table is prepared for Section 3).

15

Section 3) creates the decision tree for the table currently
being processed. The image of the decision tree is produced in
the directory vector with the proper control section references
and difectory entries to cause proper decisions to be made and
the proper action lists to be performed at execution time. Upon
completion of these operations, control is returned to Section 2)
or Section 4) according as the next card is a T card or an *END
card.

Section 4) outputs all the control information and control
sections required by the decision table block whqse translation
is being completed. Only those control sections actually invoked
in the block will be included in the produced coding. The dimen-

sioning and the initialization of the directory and of the label

vector are done at exactly the size required by the block at hand.

TABLE INPUT - BUILDING THE DICTIONARY

During the inputting of each decision table by Section 2 of
the translator, a dicticnary must be constructed or referenced
which contains the identifiers of the tables and their conditions
and actions, and the resolution of them to either a label subscript
or a directory subscript. The problem haé the following features:
the number of entries overall and the number of entries per table
is very variable; the entries may be encountexred in an arbitrary
order (since both forward and backward cross-references are per-
mitted); at any time an identifier which is sought ﬁay already be

present or may be new and hence need to be added to the dictionary.

16

One can meet these reguirements with two parallel vectors:
1) the vector of coded identifiers, and
2) the vector of their resolution as subscripts.
These vectors are kept arranged in ascending order of the coded
identifiers.

For economy of storage, each vector is a vector of half words.
The identifier value is calculated from one or the other of the
following formulas. If the identifier is that for a table, tﬁe
value is 28Tno—l. (Tho stands for the value of the digits xx in
the Txx identifier of the table statement. Cno and Ano have
analogous meanings.) If the identifier is one for a condition or
an action, the value is 28Tno+27 {if an action) + its Cno or Ano.
The 20100 possible identifiers in a block are thus each given a
unique value between -1 and 25571.

Parallel to the identifier vector is the resolution vector.
Conditions and actions are resolved to label vector subscripts
and table identifiers are resolved to directory subscripts. Every
condition and every action will have a subscripted label at execu-
tion time which enables each one to be accessed. At that point
indicated by the directory subscript for i table appear two label
subscripts, the label subscript for the first initializing action
and the label subscript for the first condition in the table.

The maintenance of the coded identifiers in order permits a
binary search for entries in the identifier vector. If ar identi-
fier is present in the identifier vector, the required subscript

is transferred., If an identifier is absent from the identifier

17

vector, the binary search will terminate at the position in the
vectors at which the new identifier and subscript must be entered.
In order to make room for the new entry, the entries already in

the vectors from that point downwards must be moved down one. If
users typically number their tables, and the conditions and actions
within them, sequentially, and make only backwards references to
actions and conditions, then their identifiers will occur in roughly
ascending sequence and there should be relatively few occasions for

moving large numbers of elements even in very large blocks,.

ESTABLISHING THE DECISION TREE

The essence of the approach used to construct the decision
tree in Section 3) of the translator is to segregate into two
groups all the rules present at each decision node. (The else
rule, if any, is kept to one side and ignored during decision
tree construction.) Into the true bfanch list are put all those
rules one of which will be obeyed if the condition is true, and
into the false branch list are put all those rules one of which
will be obeyed if the condition is false. When rules with a
"don't-care" entry on the condition arise, they are put into both
the true branch list and the false branch-list. By successive
subdivision of the two branch lists, a leaf node of the decision
tree is eventually reached.

The complete decision tree is searched by taking all the
possible branches until every leaf node is accessed. This is
accomplished by maintaining the successive false branch lists in

a false branch list stack. Whenever the processing of successive

18

true branches is concluded by encountering a leaf node, a false
branch list is popped from the stack and processed in its turn.
If the false branch list is not at a leaf node, it will generate
both a true branch list and a false branch list and the latter
will be pushed into the false branch list stack. When the false
branch list stack is empty, then the decision tree has been com-
pletely searched.

In order to reduce the number of tests of conditions required
ﬁo establish the applicable rule at execution time, some translation
time is expended in dynamically reordering the remaining condition
stubs for every decision sub-tree. At each node in the decision
tree, that condition stub among those remaining -in the active
branéh list.which has the largest number of explicit symbols (T,
Y,N, or F, not "don't-care") in the rules still present is chosen
for processing next. The freedom of execution time access to
condition stubs permits this dynamic reordering to be readily ex-
pressed in the directory vector without incurring any expense in
repetitiéus coding of condition stubs. The presence of this alter-
native mechanism for eliminating replicate coding of decision stubs
very much reduces the otherwise critical nature of the choice of

(8)

order of testing of conditions. Our choice merely ensures early
emergence of pivot rules (see below), which is a major factor
critical to minimizing executioﬁ time.

Naturally, if all conditions of a decision table have been
tested when some decision node has been processed, we have arrived

at two leaf nodes., If a branch list is empty, a leaf node con-

sisting of the else rule is provided.

Certain cases arise which define leaf nodes prior to testing

of all the conditions of the table or to obtaining an empty list.

In order to discuss these cases economically, we will define a

pivot rule as the leftmost rule in an active branch list in which

all the conditions which have not yet been tested are "don't-care."

The presence of a pivot rule in the active branch list is important

to recognize for one reason or another, so a pivot rule is checked

for at each repetition of the tree growing cycle.

In a table designated as ORDERED, a pivot rule should be recog-

nized as soon as it appears in an active branch list because it will

be obeyed in preference to rules to the right of it. Since all the

rules to the right cannot possibly be applicable in this branch of

the decision tree, these rules can be dropped from the active branch

list
cess
less
rule

list

before the next decision node is processed. The decision pro-
in this branch of the tree is expedited by dropping the_use-
rules. For a table which is not labeled ORDERED, the pivot
must be promptly recognized because it is the rule whose action

is executed. This choice is made to minimize execution time

and translation time: the choice of the first rule whose applica-

bility is established makes it unnecessary to continue testing con-

ditions.

In brief, the condition for early recognition of leaf nodes

depends upon the table options. If the table had been specified

as ORDERED, then a leaf node is reached when the leftmost rule in

the active branch list has become the pivet rule. If the table is

20

not ORDERED, then a leaf node is reached when there is a pivot
rule in the active branch list.

The growth of the decision tree by stepwise division of
rules into a true and a false branch list is convenient because
of the ease with which diagnostic messages can be produced as
a natural and relatively effortless consequence of the normal
flow of processing of an error-free input table. Several dis;
tinct kinds of errors may need to be flagged at translation time.

If a branch list is empty at any point in the development of
the decision tree, it implies that an else rule must be invoked.
If no else rule is presént, one will be supplied which generates
a diagnostic message at execution time and causes an exit from
the decision table block since there is no available action list
to implement. As has been said, the insertion of a few entries
into the directory vector will provide a mechanism by which this
execution time diagnostic can be provided. If the missing else
situation never arises, then the potential diagnostic is simply
never expressed during execution. Translation time messages may
be produced whenever a decision tree leaf node apparently requires

a missing else rule,

DIAGNOSTIC ASSISTANCE FCOR AMBIGUOUS RULES
All rules which coexist in a branch list at a leaf node

(9)

have been termed amkbiguous. Trose rules which, bhecause of the
logical relationships among the conditions defining them, cannot be

simultaneously satisfied are only apparently ambiguous. The only

21

rules which are really ambiguous are those which can be simul-

(9) For this reason, the problem as to the

taneously satisfied.
appropriate diagnostic to produce in case of ambiguous rules

is a subtle one which we have sought to answer at various levels
in the hope that each user's preference will appear somewhere
among the translator's options. The next few paragraphs will
describe the range of responses we will make. They are included
as illustrations of the design variability accommodated by the
basic list processing control device.

The levéel of diaqnostié response will be controlled by the
block or table option 'DIAG=n', where n may have the values 1,
2, or 3. When DIAG is 1, no diagnostics are given at either com-
pile time or execution time as a consequence of ambiguous rules.
This option will be useful only after the contents of a table
have been thoroughly checked, and the user is satisfied that the
ambiguities in it are only apparent ones so that he need not
have the translator point them out to him in further runs.

When DIAG is 2, diagnostics will be produced at translation
time but no execution time diagnostics will be inserted in the
directory when ambiguities are encountered. This option will be
useful if the programmer wishes his ambiguities flaggéd so that
he can check the cases against his understanding of the problem
to see if corrections in the table are warranted. Use of this
level of diagnostic assistance uses only compile time, and has

no effect on either the size or efficiency of the execution time

module.

22

When DIAG is 3, execution time diagnostics will be created
and triplets will be inserted into the directory vector so that
an execution time diagnostic will greet the actual occurrence of
an ambiguous situation. Since apparent and real ambiguities can
not be distinguished at compile time, while real ambiguities can
express themselves at execution time, this level of diagnostic
assistance is the only way real ambiguities can be discovered;
Since, as the following example will demonstrate, provision of
execution time diagnostic capabilities requires a further develop-
ment of the decision tree in order to identify really ambiguous
situations, there will be a degradation of performance as well as
an increase in the size of the directory vector consequent to
the choice of DIAG=3.

The diagnostic assistance at level 3 is useful to automate
a check on the programmer's understanding of the logic of his
pfoblem. If a user, for example, has a pair of condition entries

T_

- F
in the expectation that the two conditions will never be simul-
taneously met, i.e., that the ambiguity is only apparent and not

(9)

real, then the occurrence of 7/F at execution time should be
flaggable as a check on the programmer's undefstanding of his
problem. The effect of early selection of a leaf node under either
an ORDEKED or a not-ORDERED regimen will be to produce a two-node

decision tree {(Fig. 3a). Such a tree cannot detect the occurrence

23

of the ambiguous situation. Hence when DIAG=3 is specified, the
decision tree is more fully developed (Fig. 3b) so that the
occurrence of the ambiguous T/F situation can be detected and
execution routed through a diagnostic triplet., An execution time
diagnostic will be included only in those leaves of the tree which
are ambiguous. The leaf nodes which have only a single rule are |
not ambiguous, and the action lists for these rules will be in-
cluded in the directory without insertion of a diagnostic triplet.
If the user's understanding is correct, the error message will
never be expressed; only if his ambiguity is real will he be given

a diagnostic at execution time.

- l/\
ELSE R2 Rl ERROR ELSE
ERROR q;ﬂx\\zglPLET ERROR
Figure 3. a. Decision tree produced from ClT—
C,-F
when DIAG=1l or DIAG=Z2. k. Decisicon tree produced when DIAG=3,
The rule chosen for execution is selected according to the
ORDERED or not-ORDERED option for the table; the level of diag-
nostic assistance will cause elahoration of the decision tree in

such a way that the choice of rule to be executed will not change

as diagnostic assistance is requested or refused,

TRANSLATOR STATEMENTS
Translator statements are statements which specify that the

translator is to take some action relevant to control of the execu-

(11} gach

cution flow of the processing of the decision tables,
translator statement encountered at translate time is interpreted
and appropriate entries made in the directory vector to implement
the action specified. Translator statements may pro§ide Cross-
references to stubs in another table in the block or may cause
invocation of another or the same table in the block. Note that
if the user wishes to take advantage of the control mechanism's
capability of eliminating replicate coding of activity stubs,

he must provide cross-references via translator statements, as
the translator does not seek to identify identical stubs for
itself. |

The allowable translator statements are:

AX¥ *TxxAxx Axx *STOP

Cxx *TxxCxx Axx *RETURN

Axx *GOTO Txx Axx *REGOTQ Txx
AXx¥ *CALL Txx Axx *RECALL Txx
Axx *GOAGAIN Axx *REGOAGAIN

Each translator statement is preceded by an asterisk. The
interpretation associated with the card Axx *TxxAxX is that the
action appropriate here is identical with the action in the table
and action specified in the cross referenge. C(ross references
mucst be to executable statements (or testable conditions), and
not to cross references or other translator statements. *CALL
may be employed to invoke a closed table. *RETURN will cause
control to return to the action list after the most recent in-

completed *CALL. *GOTO may be employed to invoke an open table.

£

RE is prefixed if the tablé is to be entered at the point of
starting its condition tests. AGAIN is added as a suffix to
specify a new invocation of the table in which the translator
statement appears. *STOP causes control to be transferred to
the target language coding immediately after the *END card

delimiting the decision table block,

V. ADVANCED FEATURES

Condition stubs and action stubs may be arbitrarily complex,
and may even include such peculiarities as precondition actions
(target language assignments in a decision table Cxx statement)
and preaction conditions (target language IF (expressioﬁ) THEN
<§tatement>; ELSE <§tatemenﬁ>; in a decision takle Axx statement).
The principal limitations to use of such features is that they
must be self-contained (i.e. make no transfers of contrcl tc state-
ment labels outside themselves) and self-sufficient (i.e. they
must neither refer to nor establish values of variables of other
conditions and actions, since each is done independently in an
order possibly unique to each rule). The ability to use quite
complicated passages of target language coding as a single action
in a decision table is a real advantage, The complicated action
may be used elsewhere in the program by the usual cross referencing
mechanism, with the consequent ease of invocation which usually
applies only to procedures in PL/I.

The usual convention among users of decision tables is to
consider that closed tables may only be called by and may, in turn,

only call other closed tables. If the action list of a rule is

2o

completed in a closed table, then return is automatically made
to the invoking rule.

This convention is followed by this system, and users who
wish to observe it are free to do so. However, the following
usage, which may at times prove convenient, is permitted. Since
the planting or failure to plant of a return linkage is triggered
by use of *CALL or *GOTO, respectively, one can create a set of
tables, one of which is accessed by a *CALL statement, which inter-
communicate by means of *GOTO statements. Return to the point of
invocation can be arranged by explicit use of a *RETURN statement
or by implicit return by completing an action list.in a table
marked CLOSED. This usage permits considerably more freedom in
table construction without incurring the liability of a large
stack of link-back information.

This increased freedom in program construction using inter-
connected decision tables carries with it a reguirement for in-
creased programmer responsibility. If the program structure is
such that there are circuits with unequal numbers of *CALL and
*RETURN statements, then the potential exists for blundering into
an incorrect number of entries in the stack of return links.
.Correct use of the extended program construction facility requires
that a flow chart showing gross program structure at the table
level be susceptible to a division by a number of contour lines,
each of which is crossed in one direction by a *CALL statement
and in the opposite direction by a *RETURN statement or its

equivalent. Note that this requirement does not exclude con-

27

struction of recursive tables or groups of tables which invoke

one another recursively.

VI. IMPLEMENTATION STRATEGY

The ideas described in this paper have been implemented in
two stages. The first stage was construction of a modularized
bootstrap capable of translating correct limited entry decision
tables into PL/I coding without any diagnostic capability. Al-
though most modules were skeletal, certain central modules con-
cerned with building the decision tree and constructing the
directory vector were so written that they would serve in these
capacities in the ultimate system. This bootstrap was then em-
ployed to bring up the whole system expressed in decision tables.
The use of decision tables processed by the bootstrap to implement
the final system played the double role of providing test data
for the system and of increasing our productivity as programmers
during the final stages of system development.

At this writing our experience with the system has been with
the decision tables which implement it and with a few contrived
examples of very limited scope. The system appears to be quite
satisfactory. The design offers the possibility of including
additional features beyond those suggested here, and so deserves

consideration in any new decision table implementation.

10.

11.

L0

HUGHES, M. L., Shank, R. M., and Stein, E. S., Decision
Tables, MDI Publications (Management Development
Institute Division of Information Industries, Inc.),
Wayne, Pennsylvania ({(1968}. |

SILBERG, B., (ed.), Special Issue on Decision Tables, SIGPLAN
Notices, 6, #8 {(1971).

KING, P. J. H., Ambiguity in Limited Entry Decision Tables,

Comm. ACM, 11, (10), 680 {(1968).

KING, P. J. H., Conversion of Decision Tables to Computer
Programs by Rule Mask Techniques, Comm, Acm, 9, (11},
796 (1966). |

COULTER, K. J., PET (Pre-processed of Encoded Tables), SHARE
Program Library, 360D-03.2.004 (1967).

VEINOTT, C. G., Programming Decision Tables in FORTRAN, COROL,
or ALGOL, Comm, ACM, 9, (1), 31 (1966).

CHAPIN, N., Abstract 16, 712 Comp. Revs., 10, (5), 233 {1969).

POLIACK, S. L., Conversion of Limited=-Entry Decision Tables to
Computer Programs, Comm. ACM, 8, (11}, 677, (1965}.

MUTHUKRISHNAYN, C. R., and Rajarman, V., On the Conversion of
Decision Tables to Computer Programs, Comm. ACM, 13, (6).

347 (1970).

PRESS, L. I., Conversion of Decision Tables to Computer Programs,

Comm. ACM, 8, (6), 385 (1965).

CHAPIN, N., Parsing of Decision Tables, Comm, ACM, 10, {8),

507 (1967).

KSUYS PL/T NEATENER ANMD PRECOMPILER

NECTALB: PROC OPTINS{MAIN)

Iz

/%
/*
f%
] *

1%
xS
7%
/%
/%

/¥
/*
/%
/¥

FILE DFCLARATIONS
neL
INPUT FILE
PRINT FILF
PUNCH FILE
INPUT RECIRD
DEL
COLUMN UNE
INPUT TEXT
SEQUENCE NUMRBER
STATEMENT ID FIELD
LETTER PART 2F D

INDeX OF ACTIVE (HAR
LEMGTAH TF ACTIVE SUASTH
CHARACTER 2 BASED

ONE CHAR SUBSTHINGS

ALY

7%

/¥
J*
/%
/¥
/%

/*x

PUNCH RECORD
neL
COLUMN {JNE
QUTPUT TeXT
SEQUENCE JUMHER
INOEX OF ACTIVE CHAR
LENGTH UF ACTIVE SUASTR

CAZDOUT STRINMG

ey

! %

/%

F*x

/%
1%
/*
/%
/%
/%

/
/%
/=
F*®
/%
/o
/%

/%
¥

ks
L

/%

/%
VES
VS

PRINT RECORD
NeL
STus 1D

CHASS REFERDNCE

SIGN R BLANK
ST
CANSTAMT=? HER
EMTRY
LINENYT STRING
DICTIONARY LISTY
neL
I0 NUMBER CODE
RESALUTIAN FOR ID CODL
ACTIOIAL N2 IN CIC LIST
TABLE CODE SASE
TRIAL [0 CrDg
TRTAL I9 CODE NFESETY
DIC LIST SUBSCRIPT
neL
1: CALL CONT2L SECT
2: GNOT0 CONTRIL SELT
3: RETURN CONTROL SFOT
4 ENMD STMT LABEL SHIRS
OCL
MEXT AVATLASLE DIR SULS

x/

%/
%/
%/
*/

x/
% /
*/
=/
w/

Uy
i/
x/
%/

%/

*
w7/

o
o

e
<3

©/

%/

*/

.u.
~

¥ O 4 % 3F W
e R T T

=/

NEXT AVATLABLE LABFL Siia=/

GURRENT TABLE TNFD

=/

SYSIN FILF RECORD IHM
PRINT FTILE PRINT OUT

PUT EXT,
PLT FXT,

PUNCH FILE RECURRD QUTPUT EXTS

1 CARMIN,

2 RLANK CHAR{1l),

2 TEXT CHAR(TLY,

2 ST CHAR{A),
Iy CHAR{3) DEF CARDI
TDL CHAR{L) DEF CARD
CARDINGTR CHAR(RU) 9
INX RBIN FIXED,
INL BIN FIXED,

Moy
[N,
tF CARDIN,

CHARZZ CHAR(Z?) BASUD{CHARRZPTY),

CHARPIM{T1) CHASN{L) DEF CARDIN,TEXT;

1 CARDOUYT,

2 BLANK CHAR{1l},

2 TEXT CHAR({T1),

2 SC PIC V227722219
CUTX BIN FIXFD,
EUTL RIN FIXED,
SEQRG BTN FIXEDILS)
CARDNOUTSTE CHAP{30)

a—

NE {‘rUT L}

S1O CHAR(3Y,

FA CHAR(2),

XPEF CHAR({HY,

Fri CHAR(2),

HS 16N CHAR{L),
STud CHAR(TIL),
DCULIN CHAR (5D,
> ENTPY (42) CHAR{1
LINECUTSTR CHAR(L32}

NN NN NN

1 CICLEDIMNDICE #32)
2 IDC BIN FIXET,
2 RES BIN FIXED,
MEOICL BTN FIXED,
TCRASE BIN FIXED.
TIDC BIN FIXED,
TIDCOFE 3EN FIXED,
CICLS BIN FIXED:S
CSS(4) BIN FIXED:

RIRIMNADNS) BIN FIXED
NADS BIMN FIXED,
NAS BN FIXED;

INTT(C)
NEF CARDDUT;

)y
PDEE LINEQUT S

CTL,

CTL.

PAGE

oo e e b e e b e et e e et e e et e el e e ped et e et b e e b el et et e et et et e e et et e p e ped et e b ek et ot e e pd et o i e

L ale M« <3 *J o3t I oS Re < BE AN An R S BNG SN0 AR+ B« A0 e N = A RN IR RN LS IR I N N B B S B L o N N Y A T R S R O I PC R T PU S PV VU EVIR ST AN T O NORE O S I —

KSuers pPL/I

ne L

/% ENTRY TABLE */
/x ENTRY TARLF ROW ELEMENTS®/
/% ENTRY TAHRLE ROW x/
/% ENTRY TAHLE ROW PV Mt #x/
% RULE NUMBERS %/
/% ELSC SWITCH x/
/% STUB LABEL SUBSCRIPTS wf
/% MAX N RULFS %/
/EMAX NO STUBS *f
/% ACTUAL NO STURS #/
/% ACTUAL NO RULES %/
7% ACTUAL NO CONDITIONS %
/% ACTUAL NI INIT ACTICHS %/
/% ACTUAL NOOACTIDNS s/
7% F125T ACTIUNM LAREL SR #/
/% SECOND ACTION DE# SUB %/
FEL Y

Jak / DL

/% NEXT PROCEDURE TO CALL %/

NEATENER AND PRECOMDPILFER

ETIMNS ,MAR) CHAR(L) CTL,

CTELCM(L1JCG) CHARCL) BASED(FTELEMPT),
ETROW CHAR(LICUO) BASED(ETRUOWPT),
FTROWP CHAR{LUO) EBASEO(ETROWPPT),
RALENOIMNE)Y CHAR(Z2)Y CTL,

FLSE CHARITL),

SSIMNS)Y HIN FIXED CTL,

MNECRIN FIXED INIT(Z21),
MMS AIN FIXED INIT{SO1),
NS BIM FIXED,

NR BIN FIXED,

NC BIN FIXED,

NTA BIN FIXED,

NA RIN FIXED,

FAS{MNKY 3IN FIXED CTL,

SADS{MMNR) PRIN FIXED CTLS

NPROIC BIM FIXEDS

DOL MNDICL BIN FIXED INITE330),
MMADNDS RIN FIXFD INIT(1330)

GCL PROCLABI(S) LA®EL:R

OPEN FILE(PRINTIOUTPUT LINESIZE(132)3
ALLDCATE ET4SSeDICLyDIRLZRULENTG,FAS,SATSS

NBPROC=13

NEXT: GO T0 PROCLABINPRDC)
PROCLAB{4):

CALL EXNUTS

pROCLABLL) :

CALL DECGPT:
S50 T0 NEXTS

PROCLAB(3):

CalL PARSES

PROCLAB(Z]):

CALL TINPUT:
GU T NEXT3

PROCLABIS): :
FREE FTS5S5sDTCLUIRRILENIGFAS, SADS
[ACSS: PROCLTCODE) 3

[F CSSOTCONFY=Q
DI

THFEN

CSS{ICOANE) =NASS

NAS=NAS+1;

ENDS
RETURNACSSUICODEY b s
END TALSS;

PAGE

[N T Rt B e e I R o I e R Tl el e Tl e T T e R e e I e S S N o il e e

OO0V ODLO LD OOLE D CLO8

KSUrs PL/AT NEATENER AND PRECOMPILER

DECOPT: PRV S
ON ENDFILE(SYSINY
G} TO TERMINATE S
FELNOK FOR DECTAL OPTICN CARD*/
LOOKOPT: REAN FILE(SYSIN)INTR(CARDING
[F SUBRSTR{CARDINSTR,1,8)~="%DECTAL ' THEN
DOs
WRITE FLILE(PUNCH) FROM{CARDINY
GO T LUUKOPTS
END3
PUT PAGE FILE(PRINT);
LINEQUTSTR=Y g
RLVERT ENDFILE{SYSIND
FNC OPTIONS ARE SUPPORTED BY THE BICTSTRAPX/
READ FTLE{SYSINIINTO(CARDIND 3
LOOKT: IF IDL='TY THEN
nns
£55=0:
DIK(L)
NADS=23
NAS=13
NOICL=01
CARDNUTSTR=" GN TO #START ;Y
WRITE FILE{PUNCH}FROMICARLNUTY S
NPRNC=21
RETURN;
END3 -
WRITE FILE(PUNCH)FRUMICARDINGS
SURSTRILINFOUTSTR,14,72)1=SUBSTR(CARIINSTR,1,72);
PT FILE(PRINTISKIP EDIT(LINEUUTSTR)I(A);
READ FILFUSYSIN)INTO(CARDING S
53 TO LOCKT3
TERMINATE: NPROC=53
END DECNPT:

23

)
p=J
[
m

MMRNNNNNN SIS PSP UNNNOONNS,ED PR NNNN

iz
33
34
35
35
36
37
38
ER
40
41
42
43
44
44
45
46
47
44
49
52
51
52
53
54
55
56
57
57
S8
59
60
61
62

KSU'S PL/T NE

INPUT : PROC:
A INPUT SECTION VARTARBLES %/

neL
/% TEMPORARY NO OF RULFES =/
/% 1D CODE BREAKER */
Z% 10D CODE BREAKER STRING %/
/* RE-ENTRY OFFSET */
/% AQRK STRING ' */
/% LABEL SUPSCRIPY */7
/% VALUE OF NS FOR FIRST =f
f% TRANSLATOR 5070 Ok STap =/
/% NO RULE CARD SWITCH */
/¥ WORK STRING *f
/¥ GO CODE */
7% OPEN UR CLOSED
/% TABLE ID w/
FESTATEMENT 10 : ¥/
/* NUMBER PART OF 1ID ®/
FASTATEMENT ID LETTER */

DCL NERRS INET(O)3

ON ERROR

BEGING

/xT40:

SRET:

Tal:

RET41:

T41R02P:
T41RG2PP:

NERRS=NERRS+1;
IF MFRRS>10 THEN

Dg
NPROC=53
GATD SKET;
END3

PUT FILE(SYSPRINT)E
GO TO RET41:
END 3
=/ IF I0L-=*T"
ntis
NPROC =43
RETURN;
END
ELSE
GO T T41;
NIAQNC,NA,NR=G;
STOP=03
NS=13
CARDAUTSTR="' 1;
LINEDUTSTR=Y ¥
QUTX=23
CALL T46;
IF IDL="A" THEN
IF NC=0 THEN
nns
CALL 7383
NTA=NTA+1;
TIDCNFF=1283
CALL T49;

THFEN

ATEMER AND PRECUOMPILER

TNR BIN FIXtND,
1 COBKR BASEC(CDBKRPT),
2 TDOPE, .
2T CHAR{L)Y,
3 TNO PICY»Q9T,
2 ADOPE,
3 AORC CHARI(1),
3 SNG PICrogr,
COBKRSTR CHAR{6) BASER{CDBKRPT),
REDFF BIN FIXED,
WORKSTR CHAR{T1},
SUBPIC PIC*999r,
STOPID:MNR) RBIN FIXED,
NRCSW CHAR(1 1},
TEXTP CHAR(TI1),
GOCD BIN FIXED,
NORC CHAR(L), ®/
TID CHAR{3),
STID CHAR(3},
IDN PICY9G9Y JEF STID POS(2),
STIDL CHAR{1)Y DEF STID;

DIT{Y DCCURRED AT

TTIODGSTIDI{A)S

PAGE

MV AN S wNMNNNNONNWWOERDS DR WRWUB OV NP WLWWNNNNNMONNMNORPNNNNNRMONNMNMD NN RN RN N RN RN AR

63
64
64
64
64
64
b4
64
64
64
b4
64
64
64
64
64
b4
64
64
64
64
64
64
64
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
8¢
81
82
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

KSU'S PL/I NEATENER AND PRECOMPILER

NS=NS+13
GN TN RET41:
END;
ELSE
N3
CALL T383
NA=NA+13;
GO TO T4LRO2P;
END;
ELSE
IF IDL='C' THEN
DN
CALL T38:
TIDCOFF=03
NC=NC+1;
GG TO T4lRU2PP;
END3
ELSE
IF IDL='R' THEN
nos
CALL T43;3
GO TO RET41;
END3
ELSE

/¥ A BLANK ¥DL ==> UNEXPECTED CONTINUATION CARD*/

SIFNC:

T41R0B:

T328:
/ET38A:

F*A20%/

IF IDL='T% THEN
IF NS5=1 THEN
I+ NC=0 THEN
GU TO Tal;
ELSE
GC T T41R08;
ELSE
[F NC=0 THEN
DOs
CALL 7593
NPRNOC=23
RETURN 3
END;
ELSF
DOJ
CALL T59;
NPROC=33
RETURNS
END:
ELSE
GO TO SIFNCS
PROCS

*/ - IF STIOL=1DL THEN

RETUPN3
ELSE _
IF STIDL=YAYEIDL='CYENC=0 THEN
003
IF NR>0 THEN
Do;
TEQ=MIN{3,FLOUR{42/7({NR+L))
IF TEN~=3 THEN
D I=1 TO NRj3
IF SUBSTRIRULEND(I Y41lyl)~=* t THEN

PAGE

- ’
[l L SR eels < JE RN oA RLTE) I 0 . - S VI« S AV« BN o B # Vo B N+ « SN JEK o IV o JEN» Y o T4 SJEN (e e < =T o PREE I w T » (LG B0 S A s R ST ISR IRE RN F LT RS R S PO Y T Y S RN R Y

97

98

99
100
100
101
102
103
104
10%
105
106
107
108
109
119
1i1
112
1i2
113
114
115
116
117
117
117
118
119
120
121
121
122
122
123
124
125
126
127
128
128
129
130
131
132
133
133
134
135
136
137
137
138
139
140
141
142
143
144

50073

/*% ELSE

T42:
Ta2A:

T433:

RET43:

KSU'S PL/T NEATENFR AND PRECUMPILER PAGE
D0 12
DO J4=1 TO NR; 13
LINEQUTCENTRY{(J*TEQ)=SUBSTR{RULEND{(JI) 41413 13
SUBSTRURULEND(J)41,1)=" *3 13
END: 13
PUT FILE(PRINTISKIP EDITLLINEQUTI(A): 12
GO TQ SDOI: 12
END 3 12
CND
PO I=NR TO 1 BY-13%
CHARBZ2PT=ADDP (L INEOUT.ENTRY{I%IEO-1))3
CHARR2=RUL ENO(T1)3
END3
IF UNSPEC(ELSE)THEN
LINECUT.ENTRY LIEQ*{NR+1)}='E%3
END3
FLSE
nos
NR=423;
UNSPEC{NRCSW) yUNSPECTELSE)}="000u00L"B}s
END3
PUT FILE{PRINTISKIP EDIT(LINEOUT)I(A)
LINFOUTSTR=t ¢
RETURN;
ENDS
ELSE
IF STIDL='C*&IDL="A' THEN
D3
PUT FILE(PRINTISKIP EDIT({118}*="){X{1l4),A(11
8133
RFTURN;
END3
CLAUSE HERE FUR INCORRECT STATEMENT TYPE&DUMP CARD TO OUTPUT*/
END T38:
PROCS

REAN FILE(SYSIN)INTO(CARDIN)
[F IDL=*#" THEN
D03
LINEQUT #STGN=*4143
LINEQUTLSTUR=CARCINSTEXTS
PUT FILE(PRINT)ISKIP EDIT{(LINECUT)(A);
LINEDUTSTR=1 3
GG TO T&2A3%
ENDJ
END T42:3
PROC S
CARDINSTEXT=TRANSLATE(CARDINLTEXT,* *y',"'):
INX=VERIFY{CARDINLTEXT," '"}3
IF INX=0 THEN

CALL T423
ELSE
IF CHARIN{INX)>="0" THEN.
nos;
NR=NR+] 3

INL=INDEX{SURSTRICARDINLTEXTINX),* *)+INX-33
RULENOINRI=SUBSTRICARDINLTEXT,INL,2)3
SUBSTR{CARDINLTEXTyINLy2}=" *;

GO TO RET433 :

[
COoOOCOCMAPIUWWVWWUIAIAR ANV VIS W WWw =~ a0 w-~0.0000800C

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
161
162
163
le4
165
166
167
168
169
169
170
171
171
172
173
174
174
175
176
177
178

179

180
181
182
183
184
185
186
187
188
189
190
191
191
192
192
194
195
196
197

T4612

a3

7%

KSU'S PL/I NEATENER AND PRECOMPILER PAGE

END;
ELSE
D035
UNSPEC{ELSE)="00000001R;
RULENT(NR+1}=" E';
CALL T&23%
_ END3
END T433
PROC ¢
UNSPECINRCSW) JUNSPECIELSE)=T000000001'8 3
CSTIDYWLINFOUT.SID,TID=103
TCBASE=256%1IDN;
TIDC=TCBASE-1}
IQ:I I;
STIDL="A"';
CALL DICLUP:

II=VERIFY{CARDINJTEXT," ")

IF SUBSTRICARDINGTEXT,I1,6)=tCLOSEDY THEN

NORC=YC*3
ELSE
O0RC=Y0"': *®/
TF DICLLRES{DICLS)I=0 THEN
DI

DIR{NADS+1),DIR{NADS)I=C3
DICL.RES{DICLS)=-NADS;
NADS=NADS+23
GO TO T46R{1PS
END3
ELSE
Do
IF DICLLRESIDICLSI>0 THEN T

HIS TABLE ID HAS BEEN USED ALREADY=®/

T46R01P:

T493

/*T501 %/

LINEOUTLSTUB=CARDCINLTEXT:
CPUT FILE(PRINY)IPAGE EDIT(LINECUTI(A):
LINEQUTSTR=Y 3
PUT FILE(PRINTISKIP EDIT(YID "y "XREF"'STUB" s "ENTRIE
SYHICOL{2)Y A COLLT) »A,COL{30)A,COLILGOY »AYS
CALL T423% '
END3S
END T46%
PROC ;
GOCD=0z
STINDSLINFOUT.SID=1D3
ID:I l;
INX=VERTIFY{CARDINLTEXT,* *)3
IFf CHARIN{INX)=*%* THEN
09;
INX=INX+13
GO TO 1524
CNDG '
TIDC=TCBASE+IDN+TIDCOFF:
CALL DICLUPS
IF DICLW.RES{DICLS)I=0 THEN
Do
SSINS},SUBPIC,DICL.RESIDICLSI=NAS;
NAS=NAS+1s
END
ELSE

E BRIV IRV R G R A EVIENE RV IR R C LS RN S VU NIV VSRSV IV RS R G R I G IRE, BT N BT, BT, B I T BT R - N S S PUR OIS PO TURUS N CVR SUR TN« B« (o B« SR T o

198
199
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
213
213
213
213
213
214
215
216
217
218
219
220
220
221
221
221

S 222

223
224
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

KSU'S PL/T NEATENMER AND PRECOMPILER PAGE

/* IF DICLLRESIDICLS)I >0 THEN
THIS STATEMENT ID HAS BFEN USED ALREADY%/
SUBPIC,SSINS Iy DICLLRESIDICLSI=ARS{DICLLFESICICLS)Y)Y
G T 1563
752 REOFF=C:
T52A1 TT=VERIFY[SUBSTRICARNDINLTEXT,INX)Y," "};
IF 11>0 THEN
INX=TNX+[]~1:
IF CHARIN({INX)="T* THEN
nos
CDOBKRPT=ADUR(CHARINCINX))
GO T T543
END s
ELSE
[F SURSTRICARDINLTEXT,INX,2)="RE' THEN
RER
INX=INX+2;
RENFE=13
G TO 75244
END S
ELSE
IF SUBSTRICARDINLTEXT,INXy4)="5T0PY THEN
nr;
SS{NS)=1ACSS(1luaB) 5
GOCN=33
GO TN T55;
FND 3
ELSE
IF SUBSTR{CARNDINGTEXT yINXy7I="GUAGAINY THIN
no:
TIDC=TCRASE~-1:
GOCh=23
CALL BICLUP:
SSINS)I=IACSSI1I0R)
SSINS+1)=ABS{CICLLRES{DICLS))+REQFF

NS=NS+13
IF NC=3 THEN
NIA=NTA+LS
&L SF
NA=NA+1;

G0 7O TS5

EnNng

FLSE

IF SUBSTRUCARDINGTEXT, INX,S)=4G0OTO ¢ THEN

DO

COBKRPT=ANDR{CHAR IN(INX+5));
TINC=CDRKRJTNG®256~13
SOCH=23
CALL DICLUP;
SSINSY=TACSS{1QE)
T52RI5P: NS=NS+13
IF NC=0 THEM
NIA=NTA+13

et et
C.)C)\O\O\.OO\D-D\DCD*JGDOGND\DND\C-G)G)OJOBODOZ)CJ-JO‘-J-\J-J-J-JONmONU*O‘C*C"U-‘“Lﬂkﬂ\n\?-ﬁ‘-bbwww#‘?#‘

ELSE 10
NA=MAST 2 15
CALL TH3A: G
GO T0 7553 9
END S 9

245
245
245
246
247
2438
249
259
251
252
Z53
254
255
256
256
25T
258
259
260
261
262
262
263
264
265
266
267
268
2468
269
27C
271
272
273
274
215
274
217
278
278
279
280
281
281
282

283 .

284
285
286
287
288
289
290
291
291
292
293
294

KSU'S PL/T NEATENER AND PRECUMPILER PAGE

FLSF
IF SUBSTRICARDINLTEXTy INX,5)=*TALL ¥ TH
EN
nos
COBKEPT=ADDRICHAR IN(TINX+5))
TIADC=CDRKR JTNI*256—-11
GOCD=13
CALL DICLUP:
SSINS)=TACSS{18);
GOT0 TH2ROSP;

END 4
/% ELSE FLUSH ERRUNFEOUS CARNDS =/
T54:
/% IF CORKRLADPL-=STINE THEN FRXEONFE

US CROSS REFEFENCE s/]
TINC=250*CNEKRINTI+TIOCOFF+CNAKR, SN
CALL CICLUPS
1 DICLGRFS(DICLS Y=Y THEN
nos
DICLLCESINICLS I=-NAS;
SSINS}I=NASS
NAS=NAS+13
LINEGQUT X2 EF=L0DRKRSTRS
GO TO 71553
END
ctLSE
n0s
SSINS)=AS(OICLLRESI{DICLS))
LINEDUT A XREF=CNBRKRSTR;
G0 TO 7853
ENM3
T55: JI=INDEX{CARDINLTEXT,Y21%)
IF 11=0 THEN
Ds
LINEOUT WSTUR=CARDIN,TEXT:
PUT FILE(PRINTISKIP EOITILINECUTI(A)
LINEQUTSTR=' 3
CALL T4z
) T T583
ENDS
ELSF .
/% IF NC=0 THEN PPEMATIRE ACTION ENTRIES#H/
(AN
TMPR=13
INX=1T+2"
LINEDUTSTUB=CAPCINGSTEXT
SUASTRILINENUT ,STUB,IT)=1 13
G TN Ta4;
END
T56: SUBSTR{WORKSTR,1,15)="4 /% /13
NDUITL=1%3;
SURSTR{AWIOIRKSTR,2,3)=SUB3PIC
SURSTRIWORKSTR,8,3)=TIN;
SUBSTR{WNRKSTR,11,3)Y=LINECUT.SID:
CALL Ta9:
CALL T393 .
RETS56: IT=INDEX{TEXTPyt 220} 3
IF 1i=0 THEN

8
g
(;\
1u
1<
1o
Ly
10
1u

-
«

—
-#‘U)WW\..»'UJWuJUJ\ﬂ‘u’lU'lU‘l'J\w\.ﬂ\rbmb"lwm\.ﬂ\.ﬂU'I-P'U"J'i\-ﬂU'IU'I\J'I$U1\}1\4‘1WU1\4‘WWJ\LHUJL,U\.,\JL.JL,\JCJ

295
2% 5
295
29¢€
297
238
299
30l
EDR!
3C2
307
3L 4
304
304
304
304
3C5
3l6
307
3C8
309
318
311
312
313
314
314
315
316
217
31
319
329
321
322
323
324
225
326
3217
225
228
328
329
330
331
332
333
334
335
336
337
3314
329
340
341
342
343

KSU*S PL/T NEATENER AND PRECNMPILER PAGE

nos
LINCOUTLSTUR=CARCINLTEXT
PUT FILE(PRINTISKIP EDIT{LINECGUTI(A)
LINFOUTSTR=* 1
WORKSTR=CARDINJTEXTS
DO NUTL=6T TG 2 BY=5 WHILE{SUBSTR{WIRKSTR,(JUTL+5
1=*)3
CMDS
OQUTL=0UTL+ 43
CalLL T&93
CALL Ta2s
GO T3 157
END2
ELSE
/* IF NC=C THEN PREMATURE ACTIOCN ENTRIES*/
Doy
LINENUT.STUB=CAPLCIMNLTEXT
SUBSTR{LINEDUTASTUR,IT) = 3
WORKSTR=CARDINJTIFEXT:
SUBSTRIWORKSTR ,ITj=" ¥
D0 JUTL=6T7 TU 2 BY-5 WHILE{SUBSTR{WORKSTRL,OUTL,5

y=t 4}

END 3
OUTL=MITL+ 43
CALL T&9:
IF STIDL='AY THEN
nrs
SURSTRIWNRKSTR 1,11 1=2G0T0D 4NEXT3?;
OUTL =113
=N
i1.8%
no:
"SUBSTRIWORKSTR,1,29)=* THEN (G3TL #TRUEIGOTOD #
FALSE:Y;
JUTL =293
END 3
CALL T4a93
TNR=13
INX=TI+2:
GOTO Ta4i
ENDG
757 TF IHL=* Y THEN

nias
Cate T39;
G TO RETS6S

ENO;3
ELSF
RENH
/* IF NC>D) THEN DNTRIES ARE MSSSING %/
I+ STIuL='A* THEN
s
SUASTRIWORKSTR, 1,11 =YGCTN #NEXT:';
MJTL=113%
END 3
ELSE
i3

SUBSTR{WTRKSTR,1429)=* THEN GOTC 4TRUESGOTO #
FALSES":

NN NSNN NN PNV S VNV N NN i P el NN AN S ATV PRI O O g U Ut

10

344
345
346
347
348
34G
349
350
3151
352
353
354
355
356
356
356
357
358
359
360
361
361
362
363
364
365
366
367
364
369
3TcC
3T
371
271
372
373
374
375
376
377
378
379
380
381
382
353
384
384
385
385
386
387
388
389
390
390
391
391

T58:

/%

T64:
Toe4A:

Tea:

/%xAJ

/*x
*/

(]
ki

KSUYS PL/ZT NEATEMER AND PRZCTIMPILER PA

ITL=293
END
CALL 1593
CETIURN:
FMTYs
T T0OL=* v THEN
G1 TO 7554
ELSE
ns
IF NC>U THEN ENTRIES ARE MSSING %/
IF B0CH»=2 THEN
STOPLUY=NS
RE TN
CNis
Ko {IINSPECLELSE)= UOUaDollL "RIG(STINDL=AY) ;
TI=VERIFEY({SIMISTE [CARDINGTEXT L INXI 1t *)2
I II>»y THENM
s
TNX={MNY#®TI=1:
FTINSyTHNR)=CHARIN{INX) 3
TH2zTN? 413
TMX=TNX+1:
GO T Ta4As

END
FLSF
IF TNRI=NR+K THEM
BN
TNX=13

CALL T423
G T3 To4,
SRR L

ELSE

63 T Th63

/ TTROWPT=ANDR{ETING, 1))3
[F UNSPECINRC Sw)THEN
IF NO=1 THEN
riys
MR=TNI-13
[EO=MTIN{3,FLOCE(A2/(NR+1)))3
ENDG
ELSE
IF A=1 THEN
ning
UNSPFCINRLCSHY=Y Y
IF TNS=NE+1 THMN
BN
HUNSPrC{ELSEY= 0
K=Js
BN
LR
IF STIDL=CY THEN TEST FOK VALIOQ EMNTTIFS ANMD DIAGMOSE BAD ONES
SUBSTROFTR MW, 1 yMEFDBINIUNSPRECIELSEY I I=TRANSLATE{SUBSTRIETR
OWe 1y NRABIN(UNEPEZITLSIY I Y 4P TR 9yt)
TF GOOO>0 THEN
IF G0CN<C3 THEM
1773
FTRAOWOPT=AGCR{FT{NS-1,1)):

()]
et

(S 2o LN e SRES A REUTI AR VE VNS (V) M eolla B e BN o 2« SR BE N S N S IR N RS S TV SU I BN B oo s I e O N~ S R R, (g

Wl WL U0 O

[o B s RV I o

11

392
393
354
395
396
397
354
399
3199
4s
450
451
402
403
4C 4
4G5
406
407
408
409
413
411
412
413
414
414
415
416
417
418
419
424
420
421
421
422
423
424
425
426
427
423
423
429
430
431
432
433
434
435
436
437
437
437
433
439
46
441

KSUPS PL/AT NEATEMER AND PRECUMPILFR PAGE

SUBRSTRILTRAOWP , Ly NR+BINCINSPEC(ELSE)))=SURSTR(LTR
T g L o N #BINIUNSPEC{ELSE))})
N0
FE TEST TNR WS, NR+K+1 T1 DTAGHNUSE THCURRECT NUMHER UF ENTRIES %/
LINEDJUT JBCULNIN= il s
FRAQ2%7 DO TMR=1 TN NP&K;
ENTRY{IcO®TMR)=FTINSy TNE} 3
[F GUCOML THEN
I[F FTINS,TNR) ="YX THEN
IF STAP{TNR)=Q THEN
STOP{TMR)I=NS
ENDYS
PUT FILEAPRINTISKIP EDITLLINEONTI(A) S
LINEQUTSTR=F 13
CALL T42:
RETURNG
TH53: PROC
ITF OICLLPEST{DICLS) =0 THEM
b0
SSINSI=HANSHRENFF
DIS{NADS+HEFF)=-1;
DIR{NADS=RFNFF+1) =01
PTCL s EES{UICLS) ==NADSS
MADS=NAOS+Z
£40s
ELSE
07
SSIMSI=ARG{DICLLRESINICLS)Y+PEDFFS
TF DICLLRFSIDICLSICO THEN
‘ - NIR{SS{NS)Y==13
/* FLSE AAD TARLFE ENTRY POINT®/
EAND s
FND TH3;:
T69: PROC
[F)TX+0UTL-1>T72 THEN
0
SUASTR{CARNOUTE TR yMITH , 73T X)) =SURSTRIAIEKSTR, 1
y T3=T1UT X)) 3
SEQNI, CARDOUTLSO=SERNT+1;
WRITE FILE{PUNCHIFRNA{CARDOWT) ;
SUBSTRICARDDUTSTR,, 2, QUTL~-T73+0UTX)1 =SUBSTR{WORKSTR
2 TA—TIT X MTL=T3+00TX) 3
OUTX=U8TL—-71+00TX
gNr;
ELsr
993
SURST A CARNOUTSTR ,OUTX ,TUTLI=SURSTR{ NURKSTR, 1, ™U
TLYS
MUOTX=11UTX+0UTL
FANOs
END TH9:

T39: PRCCC
TEXTP=CARDIMLTEXT:
[T=TNDEX(TEXTP,, v vy
JI=INDEX{TEXTP, 0/ %t

RET3G: IF T1=0 THEN

I+ JJ=0 THEN
FLETURNS

)
)

crasrdsppPproc oot S b NN TSNP WWWWE =N WO O

12

442
442
4473
444
444
445
La b
447
448
449
45U
451
452
453
454
455
456
457
458
459
LEU
461
467
463
464
465
465
466
467
468
469
469
4T
471
472
573
474
474
475
476
4717
477
478
479
L3y
480
4581
481
482
483
454
435
486
487
488
4879
49
4G1

3YS PL/T NEATEMNFR AND PRECUMPILER

ELSF
T39R04: D103
KK=TANEX{SURSTRITEXTR 4 JJ) s PR/)3
SURSTRITEXTP yJJyKK+1) =" ¥
JI=TNGEXATEXTP v /%8)3
GOTAY RRT39;

Fhi
CLSE

15 JJd=30 THEN

e .
T3R5 KEK=TANDEXISUBSTRITEXTP I+)}, 00}

SURSTRFLTEXTD 3 TT4KK+L)}=Y 13
TI=T5O0X(TIXTR v ety
S0 7Y PET3DG
TR

LnE

I# TIE>Jd TH=N
o TR T 3u0 54,
b Sy
ST TR
grely T 292
END T4
T591 PRac;
SURSTRLCASN TS TH, T)= g
STy CARDTIUT ¢ 50=50 0N +1 3
WRITEL FTLCUPIINCHIEROMICARDOUT) ¢
CARANYT S Tu=t g
TX=24
IRADLX/ FAS=(:
ST T=1 TR+ STNCUNSRLCLCLSEY b
et J=NTARNCHL TO NS=13
RETPSTSLINSTRUCT ACTTON LISTS £78 FULES IN DIR%/
TH FTLd,T)='x" THEN
& TE J>ST72P{1)THEN
TE STOOUT >0 TN INACCESSIALE ACTIVN =/
[F FAS({T)=y THEN
nrs

SIFINADLY=550J1}3
HANS=NARDS +1 3
FNn g
RIBE
JEEROYVINE ANY “EQUICED CTAGHISTIOS AL PRTURYN | 1MKy®/
JE THE ADATSTRAR ATOMATTCALLY SUPPIIOS #RETHRY [0 LVI=Y WLl NUT
CONCLURTNG WITH A TRANSFUR OF CONTH LR/
IF STOP(iYe=2 THEN

/% PP s 0=s0Y THER MISSTHIN TSANSEER DF CONTROL #/f
PR FASL{) =0 THEN
N

FAS{T)==TACSS(11R);
SANS{I)=NADRS:
END
FLSF
e

B W N R W R O N O e T 2 BV S S I Y N [AV s SIS 3 B e R Y B ey

(v

o Jd) D~y =~ = O O

~ 0

B S SR VI &

NN NAN~NT VYW

13

492
492
4973
454
405
496
47
493
453

£~

"y

.
;s

wn

A ol ol]
(S

P O R N s " IRV IS A B R)

LA B B

(W)

[BN)
[s

S

WA
T

W2 IR R
Pt = O T

MSULS DL/ NEATOMED AND PR ECOMPILEK

DIRCNANSYI=TALSSTLIRG S
MATDS=NALS+HLS
ENDG
END3
FEPROVEIDE TASBLL LINKAGFE #0307 MAIN ENTEYX/
: TIDC=TLAASE-T3
CALL ICLUPS
NICLLRESIDICLSY=ARS{TICT JRFSICICLSY)
DIRIDICL RESIIDTICLS)YI=NADS S
FHTRANSFER TNITIALTIZING ACTION LIST TN DIR=/
0 ¥T=0 TO ONTAG
DIRINADS+II=SS{T+1)3
END 3
NADS=NADS+NTAS
[F NC=0 THEM
FHOPROVIDE DTACNNDSTICS TF RETURN 1T INK FOR ACTICN TARLE=®/
IF NS5-1-=STNPICITHEN

/¥ FF OSTOPLI>L THEEN INACCESSISLE ACTIONS #/

/* ELSE */

/% T MORC=%0" THEN MISSING TRANSEER U CUOMTRAOAL %/
273

DIR(NADSY=TACSS({11R);
NADS=MATS+] s
ENDY
FAEPROVINDE TARLE LINKAGE FOR FE-FMNTERY PIIINTX/
/* IF NC=3 THEN
I QIR(DICLLOES(RICLSI+]}=~]1 THEN
MVALILN FORWARD REFERENCE SOMpPLACE */
DIRINICLLRESIDICLSI+1)=RNALS S
END THIS

PAGE

) W b e B

WwWwWwWwwdhoor oo n gD

1l

537
538
539
563
541
541
542
5473
544
545
545
546
547
548
544G
55
552
551
551
551
551
552
553
554
585
555
555
555
555
556

DICLUP: pPRAOC 3
oL

/% MEW LOCATINN
/¥ OULD ENCATTON ¥/ NG CHAR(128)

KSUYS PL/AT NOATENTR O AND PRULCCMPLILE®

BOL EHIGH,LOWY RIN FIXEDS

£% LOMK FAR SNDT %/

LidW=13

HIGH=NDICL &
GUESS: DICLS={LOW+HIGH) /25

IF
F% T00D LW %/

IF
/% TGN HIGH %/

NICLLIDC{DICLSICTING THEN
nos
LOW=DICLS+13
IF { W<=HIGH THEN
GO T GUFSSs
O T3 NOTF
ENDYSL
DICLLINCIDICLSI>TING THEN
nivs
HIGH=DICLS-1%
TF LOWS =HIGH THEN
G0 T GUESS:
53 TO NOTF 3
ENDy

RETURN:

NOTE: DICLS=

Loy

Z% IF MDTICL >=MNDICL THEN ERENL ¥/

1

NICLSC=NDICL THEN

IDIRE
DY I=n1cLs 10 MDICL BY
BN

1=1-323
BooJd=1 T DICLS dy—-32:
ALGCPT=zaDDR (OICLTJY) s
EEDNCPT=ADRODP (DICL{J+L)) S
MLGC=0L0C s
ENDS

EMTS

NICLLIDCH{DICLS)I=TIDN
DICLLRES(UICLSI=J3

NDICL=

NOTCL +#13

B8 DICLURS
END ITNPUTS

")
]
(o]
ma

*f NLOC CHAR([1Z28) BRASED(NLOCPT),
BASEDR(GLOCPT)

™~J
-

[¥

ER T "R SRS (R L VR U IR SRS R s R s SRS NN oS RS B B o SR B (R IR UV IR FN I U RN GURRT VI U SR US Sy WF Y}

I
-

MW Wwwum> O o

-
\n

VLU
o CU o~f

T T

W
WV w
LG

560
564U
561
H62
563
5¢4
565
566
507
568
56%9
57J
571
572
573
574
5795
576
577
573
579
5749
58¢
581
552
5813
584
585
58¢&
537
588
589G
594
561
592
593
554

KSurs 21./1

DAL SE?: AN AT

£*E DYNAMIC NRDER OF w/

£ CCONODITIOGN STUPRS */
neL

F% NDONOF ACTIVE L FVFL
JE COND BRANCH VALUES
/%% /
f3d TRUE BRANCH LIST */
sl
/% ACTUAL NI OIN THL
F¥ H0 TN THE FOR SRRORS
/X% TRUE AAIAMCH LTST
/%7
£% FALSE BRANCH LIST S5TACK %/
el
J#CACTUAL N OIN FBLSINC)
Fx NG OIN FALS FOR ERRARS
f¥ FALSE BRANCH LIST StTACK
A% FALSE DIR SUB STAUK
A% ON[E ELEMENT IN STACK
/% CACTUAL N OIN FAL
Ja NG v FBL FOR ERRIRS
% FALSE ARAMNMCH LI1ST
FRx/
F¥E OACTIVE RRAMCH LIST */
BeL
FxCACTUAL ML IV ASL
£ NO TR ARL FUR EFRRMORS
/% ACTIVE RRANCH LIST
oL
/% LEAF SWITCH
3 T=NTA+1 T7 NI
A¥INTITTALTZY CONDITION BRANCH
ChR{l)=1-13
ONCSEI-NTAI=T3
END3
N0 1=1 T MRS
ARINTITIALTZE TRUE BRANCH LIST
TEBLIUT =13
FNM S
NTRL =NO s
NAL=13
CLTRUF: AZLPT=ANDRETRIUE) 3
FEEXDPLARE A TRUE BRANCH 2F THD
CALL REDRCS:

NCATENT R AND PRECOMPILIK

DCCS{MC)Y RIMN FIXED,
x4 NAL BIN FIXED,
#f CUB{NTA+TINTA+NCY CHAR({L) S

1 TRUE,
o 2 NTHL BIN FIXED,
s 2 MTHL A1 FIXED,
=/ 2 TALINR)Y RBiIN FIXED:Z

1 FALSESINCY,
=/ 2 HNFGLS BIN FIXED,
W/ 2 MPBLS BIN FIXED,
=/ 2 FBLSINR) 3IN FIXED,
4 FDSSINC) BTN FIXED,
=/ 1 FALSE RASED(FBLPT),

= 2 NEBL BIM FIXED,
=/ 2 MEBL BIN FIXED,
®/ 2 FBLL1uC) AIN FIXEDRS

I ACTIVE BASEDIABLPT),
=/ 2 MARL RIN FIXED,
*/ 2 KASBL TBIN FIXDD,
*/ 2 OASL(100) 31N FIXED:

#/ LoAr CHAR(1) S

AN 3
VALITES AME BOCS*/

FOR STARTFR %/

PECTSTIIN TREEF UNTIL A LeAR NUOE IS

OIRINADSY=S55(O0GCSINALY Y S

[+ NAL=1 THEN
NADS=NADS+1
ELSE

NADS,,DIR INADS+1) =NADS+ 4

BRAMOCH: FALBT=ADDREFALSESIN
FIASSTNALY=NANS+2;
CALEL RRANCHP:
CORDICSINAL)= T8
NLOS=NADS S
ARLPT=ADRR{TRUE) ¢
G T TLLAFR:

AL

FLEAF: CORIDNCSINALYI='F'

PAGE

MR PU PO N PRI A DWW W NN N PO RN WL W W WL WWNNRNNNMRNN MNP NRNMND RN NN R RN RN ™D

16

595
596
596
5494
594
5G6
597
597
HG Tt
597
5a7
537
5618
5905
5935
5938
595
593
595
5gA
5G 3
598
5ag
8G9
59Y
599
594
546
599
60
LU
15100 |
502
632
5G3
CIh
605
Hao
606
697
68
509
610
511
£11
&12
613
&l4
6l5
615
616
elL7
£18
619
62y
c?1
622
623

KSH'S O /T NEATONOR AND PRECOMPILER PAGFH

JETRUE BRANCH FXHAYUSTIN AT THIS LEVELTFXPLORE FALSE RRANCHX/
NLDS=FDSSINAL);
ABLPT=F8LPT:
TLEAF: [F NABL=C TREN
N ;
FRTF =ELSE THEM FRROR #/
ABLTT)=NR#L;
60 T ISLEAF;
ENIYS
CALL LEAFPFEC:
IF LFEAF=91' THEN
IR
TSLEAF:
/% IF NABL>1 THEN PESPAND T APPARFNT AMPRIGITITY#/
ZEPLANT LINKS APPROPQIATE TO PHRESENCE AT LEAF NiDux/
FASEARLL{LYI=ARS(FASIABL (L)))
DIR{NLDS)I=FAS{ARL{L))
DTR{NLDS+L)=SARSLABL{LY)
CIF COBRIDUCSINALYI=TTE THTN
nas
NADS=NATS+4 3
GO T FLEAF:
FNDS
ELSFE
: Nl
DECNAL ¢ COR{DOCS{NAL) Y= =13
NMAL=MAL=-13
TF NAL=D THIN
JRSCAN FOR 2IJLES NIT TMPLOYED Y CHECKING FNR NFGATIVE FAS SNTRIES®/
- AETIRNS
[F COR{DDCSINAL)Y I=*F* THEN
JELONAP THROUGH ALL EXTSTING LEVFLS Of COMPLETED FALSE REANCH SURTROES*/
50 TN DECNAL ;
FALPT=ADDRIFALSES{NAL))3
53 T FLEAF:
£H0s
EMDS
NAL=MAL +13
[E CUBIDOCS{NAL=-1))="T"Y THEN
50 TN LTRUE S
/%PROCESS FALSE SUSATREFE AT CURRENT LEVEL%R/
ABLPT=ADURIFALSES (NAL=-1)) 3
CALL REDNCS:
DIR(FOSSANAL=L I }=SS(ROLSINALY) ¢
GIR(FNDSS{NAL-1)+1)=NADS 3
571 TN BRANCH:

MNPRNMNOVN WWR RPN~~~ TSP wND P psd NN

17

£24
624
£25
626
627
£28
628
629
630
631
632
£33
634
534
634
£34
6395
6306
637
538
639
S54U
e41
&42
&E42
543
Ea44h
£45
546
£G4 €
&4 7
648
G4 d
649
658
651
652
653
654
655
£56
656
&5 7
653
659
560

KSUrS PL/AT NPATINER AND PRECOMPILER PAGE 18

BRANCHR : pROC S 3 6l
/% BPANCHR PRACCDURE */ 3 4662
/% BRANCHR PDETERMIMES WHICH RULES IN THE ACTIVE BRANCH LIST (ABL)Y */ 3 562
J¥ RELONG IN THE TRUE ARANCH LIST {THU) AND WHICH BELENG TN THE #/ 3 b2
/% FALSE BRANCH 1LIST (F3L) RASED ON THEIRP CONDITICN ENTRY FOR */ 3 662
F% CONDITION JDCS(MAL) S =/ 3 562
J% SAVE MNARL VALUE =/ 3 Gé2
NABLS=NABL: 3 662

FE INITTALTZE NTDL AND NFBL3S GINE OVERWRITES NABL, HENCE NARLS®/ 3 663
NTBRL,NFRL=]; 3 643

' ETELEMPT=AUNRA(CTINDNCSINALYL1)}) 3 ab4

Z% AN EACH RULE TN ABL T THE APPROPRIATE BRANCH LIST(S) */ 4 665
DO T=1 TGO NABLS:S 4 HES

K=AR1{11}; 4 &vé

[F ETELEMIK)='TY THEN 5 667

7% ADD RULE T TBL */ A oY 663
NTRL=MTSL+1: & 6619

TRLINTRLI=K 6 670

ENDS 6 671

ELSE 5 £72

IF FTELEM{K }=TEY THEN 6 a7z

J% ADD RULE TO FAap %/ IR T 673
MERL=NFRL+1: 7 674

FOLINFRL)=K3 7 675

FNE S 7 674

ELSF &6 K17

/% FOR DONYT CARE ENTRIES AOQD THE RULE TC RITH TAL AND FAL %/ 7 677
' g 7 677
NTRL=RKTRE+13 7 618

MEAL =NFRL+13 7 679

TRLINMTAL)Y ,FRLINFBRL) =K T 682

£NDs i /81

FND s 4 (B2

END BRANCHRS 3 683

KSYUTS PL/L NFATENER AMD PRECOMPLILER

REDICS: PRI S

J *
I
/%
/¥
/%

/*
/*

f*
S

/%

/%

/%

PEDGCS PROCEDURE */

RENDCS REARDERS THE OYNAYIC CRDER GF CONDITION STU2S (DRCSY */

BY INTERCHANGING COCSINAL) WITH DOCS(NNCSS) WHERL DOCS(DRNACSS)
IS THE UNTESTED CONDITION WHTCH HAS THE FEWEST DUN'T CARE %/
ENTRIES IN THE RULES IN THE ALTIVE BRANCH LIST {ABL) #/

DCL (NDCE, SNOCE,DUCSS) BIN FIXEDS

[F THERE IS NNLY ONE UNTESTED CONDITION THEM NO INTERCHANGE */

1S NECESSARY #/
IF NAL>=NC THEN
RETURNS
NDETERMIME SNUOCE AN THE CORRESPEONDING LQCCSS */
CALCULATE NDCE FOR FACH UNTESTED CONDITINN #/
NG I=NAL T MO
ETELAMPT=ADDR{FTINOCSET), 1003
_ NDCE=Cs
CALCULATZ NOCE FNR CONDITINN DOCS(T) %/
DO K=1 TN NARL:
IF ETCLUM{ABL{K))="=% THEN
NDCF=NOCT+1 3
[03
IF I=NAL THEN
ASSTGN THITTAL VALYJES T SNDCE AKD DOCSS */
SBE
SNOCFE=NDCC Y
DOCSS=NAL
50 TO ZERNDCE:
FMD S
ELSE
I+ NDCECSMDCE THEN
ASSIGN NEW VALUES T0 SNICE AND ROCSS %/
003
SNACE=NDCE 3§
nMess=1;

TERQDCE: IF SMOCE=9 THEN

7%

NOCCONDITION MAY HTAVE LLOSS THAN ZERG DONYT TARE ENTRIeS */
52 TO INTCHGS

END3

TNTCHG: IF NAL-=00CSS THEN

/*

INTERCHANGE DNCSINALY AND DOCS(UBLSS) %/
IR
[=N0CS (AL S
NACSINAL }=D0C5(DDCSS) S
DRCSLOCSS)I=13
ENDZ
END RENDNDTSS

PAGE

[FURV, IV, IE IV, IRV IRV IV o R S B e o3« sl ¢ SR I T A I Y 1 B A0 (O v 2l o S e RV RS B 5 0o UL BV AR - Y e~ o R~ R A SR VRN U VEARVS SRR M e

19

L84
£85
689
£ns
£RBS
¢85
&85
586
GRE
066
&37
6835
598
588
L8 7
69U
&yl
691
R
693
694
£95
696
696
697
H9 3
£95
(gAY
701
701
702
702
753
U4
Tus
1306
TG
TO7
708
709
Tiu
710
Til
712
713
714
715

KSUES PL/ZT NEATENER AND PRECOMPILER

LFAFQEC: PROC
F¥ LEAFREC PROCERJRE */
7% LEAFQRC NETERMINES TF THF ACTIVE KRRANCH IS5 A LtAF OF THE %/
Z¥ DECISTON TREE ARDT STTS THE LEAFR SWITCH. %/
FEOTT 1S ASSUAMLH THAT AT LFAST CONE EJLE KEMATINS IN THE ARL, =/
J% TF ALL CONDITIONS HAVE 8FEN TESTEND THEN THIS IS NECESSARILY %/
/% A LEAF =/ IF NAL>=NC THEN

nns

MPIV =13

1Y T TDSTAMA S

EXND
F3 DETERMINF [F AWNY jF THF S9p S Ih ARL CONTATIN SON'T (ARE ENTRIES %/
f% FOR FACH UMNTESTED CONGTTION %/

N KPIV=1 Tt NABL S
K=An] {N2 1Y)3
Y J=NAL+D Tiv NCs
TE ETOUOCST) K)a=1=1t THEN
ST NXTRULES

e
F% QUILE K CONTAINS COMN'T CARPt DATRIES FOR FACH UNTESTED CONDITION %/

T# NPIV>L THIOHN

s

ARL{1)=ARL{NPIV):

MARL=13%

FND

GY T TESTAMP
NXTRULE : FND 3
/3% NO RULE CONTATNS DRN'T CARE ENTRIFS FOR EACH UNTESTED CONDITION */
SLEAF: LEAE=T1O1
RETURN:

TESTAMS: L FAF=v10;

J% THE RULES IN THE ACTIVE BRANCH LIST ARE AT 4 LFAF OF THE x/
/% DFCLISTAON TREE =/
EMIY LEARPLECS
LN PARSTS

PAGE

PO RN R IR R R g i v

-

P W Wi e 0 0 a5

20

716
717
717
717
717
717
717
713
713
124
721
722
722
722
123
124
725
i2e
727
T24n
723
7249
T3¢
731
732
735
734
735
735
136
737
730
733
134
739

KSUYS PL/LI NEFATEDNER AND PRECOMPILER PAGE 21

EXONT: pPRAC s 2 T4y
J¥ EXECUTION CNODE *f 2 141
DL EXCODE(22) CHAR{AC) STATIC INITH 2 741

LI : ALLOCATE #LMNK; 1, 2 141

' HLNK=4CPT+1:?, 2 141
LI L 2 741
YOAGOTOD: ACPT=ANIR(ANIR{FCPTIIFLIY, 2 141

' GO TO ABLAR{HDIR{U#CPT-1))310, 2 741

t oy : HCPT=6LNKIT, 2 141

v FREE #LNKS', 2 741

v OHNFEXT: HCPT=4#CPT+1:!', 2 141

! GLU TO #LAR{#NIR(4CPT-1))5", s 141

Y HFALSE: HCPT=H#CPT#+2;:10, 2 141

* ATRUE:: HNXT=#CIR{4CPTIs Y, 2 141

! H#CPT=#DIR{4CPT+1Y) 1Y, 2 141

' GO TO #LARLHEMXT) 3 ¥, 2 741

Y ORSTART: TF 456T=v41¢y THON DNy SWT=t¥Gregr, 2 T4l

' #LAR()y =% s RLAR(i=4 s BELABL 1=% ;5 #LABA Y= 2 741

4 HLES 2 141
! #CPT=1s GC TO HGJTNY, 2 141

t DEL #SWT CHAR(L) STATIC INIT(reLYY), 4L AB(ISTATIC LABREL 2 741
{t,!? HSTART ¢ #NEXT o H#FALSELH#TRUE) S, 2 741
! DOL (#0PT,6#NXTY 3IN FIXEDD STATIC,#LNK CTL BIN FIXED,?, 2 T&4l

1 #NIR(Y BTN FIXeD STATIC INITELY, 2 141

' ’ ’ ¥ 1) ’) ') ' ')) ' l 741

y 'y 2 741
H : HA B 2 741

OCL EXREC CHAR{ZD)Y BASEOIEXRECPT) 2 142

DCL EXAEC2 CHAR{HO) STATIC: 2 743

PDCL 1 LA DEF CXRECZ2, 2 Ta4

2 FA CHAR(9)}), 2 144

2 STMT(4), 2 144

3 FR CHARP({5), 2 744

3 SUB PICY7793%, 2 Ta4

3 KC CHARL[3), 2 T44

3 LAY PIC*9G9Y, 2 T44

3 FD CHARI(Z2), 2 T44

2 FE PIC*77771773%; 2 T44

DCL 1 D1 DEF EXREC?, 2 145

2 FA CHAR{9), 2 145

2 IMIT{15}), 2 T4%

3 SUR pPICYIza, 2 T45

3 FR CHARI1), 2 T45

2 FC CHAR{11}): 2 7145

NCL LARPICP PICrygaty 2 146

OCL SUBPICZ PICYSHGY; 2 T47

NCL CSXU4) RIN FIXFD STATIC IMITH{I3,0648)% 2 748

NCL OCX{5)Y PIN FIXED STATIC INITIB,15416421,22): 2 T49

DOL 1 LABPIC BASER(EXRECPT) 2 15u

2 FA CHAR(2), 2 158

2 5u3 pIl1ggar, 2 T5u

2 FR (CHaR(4H), 2 T5u

2 SO PICYZZIII2729": 2 750

DOL SUBRDIC PICYZI9Y S 2 751
I=TACSS{102}3 e 152

FHEMERPELY GUARAMTEEING THAT CSS5(2) HAS °FEN ASSIGNED*/ 2 152
SURGTIC=NADS-11: 2 753
SURSTR{IEXCODE{2D)415,3)=SUBPIL 2 154

KSU'S PL/AT NEATENER ANC PRECOMPILER

LABPICP=TACSS{100R)Y
SUBSTRIEXCODE{ 22),3,3)=LARPICP;
SUBPIC=NAS-1;
SURSTRIEXCIODE(LT}Y+50,43)=SURPIC:
/% PUNCH THE CONTROL SECTIONS NEEDED */
Do 1=1 T2 33
IF CSS{I)~=0 THEN
DO J=CSX{TITO CSX({(I1+1}-13
EXRECPT=AONRRAEXCODELI))Y S
IF J=CSX(T)THIN
LAKPIC, SUB=CS55(T1)3
SEQND,LABPIC,SC=SEQND+1;
WRITE FILE(PUNCHIFROMIEXREC) :
ENDS
ENDS
7% PUNCH OTHERE CONTROL STATEMONTS %/
D3 I=CCX{1)TT DUX(2)-13
EXRECPT=ADDR{EXCODE{T)})
SEONTLLABPIC,5Q=SEQNC+1:
WRITE FILE(PUNCH)IFROM(EXRECY 3
END
/¥ LABEL ASSIGNMENT STATEMEMTS %/
EXRECZ=EXCAORE{OCX(2))3
DO I=1 TO NAS BY 4;
nn J=1 TC 43
LASSTMT oSUR(S)ZLALSTMT L LABL{U)=1+J-13
END:
IF T+4>NAS THEN
SURSTRIFXRFCZ2 10+ {NAS-T)}®16)="ENTI Y,
LALFE S SEQNO=SEQNTG+L
WRITE FILEIPUNCHYIFRUMIEXREC2 S
FNTS
DD 1=0CX{(3¥70 DCX{4)-1;
EXRECPT=AUDRIEXCODE{TIY)
SEQNDL,LARPIC.SQ=SEQNC+]1:
WRITE FILE{PUNCHIFROMIEXREC) 3
END s
¥ DIRECTORY IMITIALIZATION STATEMENT %/
EXREC2=FEXCUNELUCX{4)):
DY I=1 T MADS-1 BY 15;
N Jd=1 74 153
DILSINIT LSS (J)=DIR(I+d-1)3
ENIY
T T+#1I55>=NANS THEN
SURSTFIEXRECZ 3+ {NANS—-T)*4}=1)3";
LALFESEQNT=SEQNU+L
WPITE FILE{PUNCHIFROMIEXREL?) S
FNDs
EXRPECPT=ANDR{EXCOLE(DCX(S)1)) s
SEOQNUOLLABPIC,SA=SENNT+]L
WRITE FILE(PUNCHIFRUM{EXRIC) s
ENG EXTUTS
END DECTAIS

PAGE

PR RN WWW S S PP WNNWWWN WWWWW P AR WUNNWWWWRWW AWM OC WU S W h RN

22

755
156
757
158
759
159
769
761
162
763
T64
165
766
67
168
769
763
170
771
772
773
174
774
775
776
717
7iB
7793
780
781
7582
783
T84
785
156
157
788
739
749
790
791
792
793
794
795
756
797
738
7949
800
301
B2
303

