~ SHARE PROGRAM
LIBRARY AGENCY

=MAES

HHHHHHHHHHHHH

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
5555555555555

SHARE PROGRAM LIBRARY SUBMITTAL FORM SHARE PROGRAM LIBRARY AGENCY .
° Triangle Universities Computation Center
Post Office Box 12076
Research Triangle Park, North Carolina
27709 Usa

fo

SPLA CONTROL NUMBER: = C.°

This form should be completed and gubmitted with the program package to the SHARE
Program Library Agency at the address shown above. Standazds and imstructions
for submitting programs are in the "SHARE Reference Manual®.

(1) Program Number (to be filled in by SPLA) croecnon 36@‘ o ’ .Q . OI_Q

(2) System Type (machine) ccosscsnsvacessovsssso 360/370

(3) Search Key.coeerooesesosnancrsonsneos Password protection

irreversible security transformation

computer resource authorization

encryption
(4) Programming Systems/Languages. standard 360/ASSEMBLER
(5) Author's Name and Address.........- H. D. Knoble

214 Computer Building
University Park, PA 16802

| . (6) Direct Technical Inquiries to Name & Address 1. D. Knoble
!\ (if different than Author)
|

214 Computer Building

The Pennsylvania State University

University Park, PA 16802

.\ (7) Title of Program..scccecsco One-Way Enciphering Algorithm for Password

Protection

(8) Submitter's Installation Membership Codeé....._ PSU
(9) Submitter's Own Program Identification and Suffix(Optional).. -

(10) Primary Subject CodecOil-l-t-n.a...t.'un--n--. SECUrity
(11) Minimum System Requirements ' §/360 2K bytes memory

(12) New or Revision Code (if revision, ghow prior Program Mumber in Item 1)_10/76

!-. (13) Year Comleted.'.‘.l.uﬂﬂ"...'II.-“.I.I....'I.IIIIDIOBUG.QG.HDUID 1976
(la) Date of Suhmittal--.---a--u-----o-.o..---ao--oun.uoaaoonesesu 10/76

(15) Documentation (number of original pages submitted).c.c.onoees 10 pages¥*

(16) Abstract (should contain gufficient information for a reader to determine
. the value of the program). Listed on the reverse aside of this form are
subjects which may serve as a guide for a descriptive abstract.

Ravised 4/74 * The implemented computer program has been copyrighted by the "author E
' in an effort to assess its usability. Your cooperation in requestihg
permission to distribute the program across computer installations will - therefore -

be appreciated. s LR
iii .

SHARE PROGRAM LIBRARY SUBMITTAL FORM a .

Subject Guide:

a. Purpose

b. Programming Language used

c. Version and modification level or release number
d. Field of application

e. Type of routine (main program, subroutine, &tc.)
f. Specific description of machine requirements

ABSTRACT
Subroutine PURDY is a re—enterable system utility program which

evaluates a tamily of mathematically sound, one-way enciphering functions with

known properties. The algorithm is implemented here €O enable 8-character

passwords to be irreversibly enciphered for security applications (computer

resource authorizations). Unliike many existing methods used for several current

operating system security applications (e.g. MVS passwords), this method does

not rely on keeping the algorithm or list of enciphered keys secret; this is

true because no known algorithm exists to inmvert the enciphering function, and

even if one were discovered, deciphering a key would still require, on the

average, many years of CPU time omn modern, high-speed equipment. Because the

family enciphering functions upon which this routine is based has essentially an

infinite number of parameterizations, this implementation allows computer

resource authorization to be independent and unique across applications.

1S "'npg ;£.l§_§ oAl d:;"’lnb,ﬂjgd :b@

(Please attach additional pages if NECeSBATYY)..s.:00000cT0tAl PAgEw attached O

Permission to Publish .
"] hersby give tha SHARE Program Library Agency permission to reprint, re- T

produce, and distribute this progran.”

1 (17) Signature of Submitter and Date X Fiing@W Q;2 5”%;;d6;5; j
, (18) Signature of Installation Addresse _E_ng (722 4&,& -
‘ . .

Installing the One-way Encryrtion Subprogram, PURDY

The distribution tape, VOL=SER=ENCRYP, is standard label.d
and contains five data sets, each with
NCB= (RECFM=FB,IRECL=80,BLKSIZE=3200) as follows:

LABEL=1,DSN=S0OURCE, contents = assembler source code for the
encryption routine, PURDY.

LABEL=2,DSN=KCMP, contents = assembkler routine KOMP needed
for TESTDECK.

LABEL=3,DSN=TESTDECK, contents FCRTRAN test deck.

i

LABEL=4,DSN=0BJECT, contents = object code corresponding to
DS N=S0URCE.

LABEL=5,DSN=TESTDATA, contents = tast data needed for TESTDECK.
I} The system may be installed using any 360/370 assembler which
will batch source modules. For example, using Waterloo's

ASSEMBLEE (G} the routinas may be installed as follows:

// EXEC ASMGCL,PARNM.ASME='BATCH',PARM.LKED='XREF, RENT!

//ASHM,SYSIN DD UNIT=2400,VOL=SER=ERCEYP,DSN=S50URCE,DISP=(0LD,PASS)
//LKED,SYSLMOD DD DSN=SYS1.SYSTEM.LIBRARY(PURDY),DISP=(OLD,KEEP),

// VCL=,0NIT=

If no such assembler is available, the file SOURCE may be
punched and appropriate JCL inserted to enable multiple
assemblies followed by a linkedit, similar to that illustrated
above, An al*ernative procedure would be te linkedit the
obdect modulas on file OBJECT as follows:

// EXEC LKED,PARM.LKED='XREF,RENT'
//SISLMOD DD DSK=SYS1,SYSTEM.LIER2ARY (PURDY),DISP=(OLD,KEEP)
//SYSIN DD DSN=0BJECT,UNIT=240C,VCI=SER=FNCEYP,LABEL=4

IT) Once the routine has bean installed, it may be tested as follows:

{page 6 of “he documentation shows correct ocutput)

// EBXEC ASMPC

//BSM.SYSGC DD DSN=&ELCADSET,DISP=(,PASS) ,SPACE=(CYL,2)
//ASM.SYSIN DD UNIT=2400,VCL=SER=ENCPYP,LAREL=2,DSN=FKONP,

// DISP=(CLD,PASS)

/7 EXEC FORTGCLG

//FPORT.SYSIN DD UNIT=2400,VCL=SEF=ENCEYP,1ABEL=3,DSN=TESTDECK,
// DISP=(01lD,EASS)

//LKED.SYSLIB DD

/7 DD DSN=SYS1,SYSTEM.LIBRAFY,LCISP=SHR

//G0.FTIOS5F001 DD UNIT=2400,VCI=SER=ENCRYP, LABFL=5,DSN=TESTDATA

An Efficient One-way Enciphering Algorithm for Password Authorization

by H. D. Knoble (PSU)
The Pennsylvanla State University Computation Center

Computer Building, University Park, Pa. 16802. 814-863-0422

Session S405
Tuesday, August 17, 1976 - 3:30 pm

INTRODUCTION

The purpose of this paper is to Introduce and document a
re-enterable system utility program which evaluates a family of
mathematically sound one-way enciphering functions[l] with known
theoretical deciphering times. The supporting algorithm([2] is
implemented here to enable 8-character passwords to be irreversibly
enciphered for security applications on an IBM 360/370 host computer
system. Unlike some existing methods which rely on keeping the
algorithm and list of enciphered keys secret, this scheme, while
remaining simple in principle, defys any known method of mathematical
breakin even when these resources are openly available. Bacause the
family of enciphering functions upon which it is based has essentially
an infinite number of parameterizations, this implementation allows
computer resource authorization to be independent and unigque across

applications.

USE

At the expense of a few more program parameters and a loop
Subroutine Purdy may easily be coded to evaluate a more general f(x) mod
P than equation (1), This has not been done in the distributed version
for reasons of execution efficiency. Therefore this section is
presented in two parts: (1) Use of the Distributed Program; and (I1I)

Modifications to Evaluate Other Classes of Enciphering Functions.

I) Use of the Distributed Program

Once the subprogram is made available to the calling program by
placing it in an appropriate library, linkage is effected via a standard
0S8/VS calling sequence:

LA 13, SAVEAREA point 13 at your save area
CALL PURDY, (X, FX,PARMWORK)
LTR 15,15 test the condition code
BZ NORMAL zero is normal
where:
X is given as the address of an 8-character password to be
enciphered;
FX is the address at which the 8-character enciphered password

corresponding to £(X) in equation (1) is returned.

PARMWORK 1is given as a 200 word array as follows:

PARMWORK+00 - NP, the precision or number of computer words per
password; this must be equal to the integer 2.

PARMWORK+04 - A, the value of the prime offset constant in the equation,
P=264-A, chosen to make P prime; the value of A therefore
must be a positive integer in the interval [59, 23117,

PARMWORE+)8 = Q, the number of bits in an 8-character (2-word) password;
this must be equal to the integer 64,

PARMWORK+12 ~ N, the polynomial degree corresponding to equation (1); N

should be chosen as a non-prime large positive integer

(say larger than 107).

-5 =

*BEEEBRRBBBERBEBEREBEBBBEEBEBBBEEBBEEBBEBBEBBBEBEBEBBEBBEEBBEBBED
¥ememeeee=BEGIN POLYNOMTAL EVALUATION,

The input password is stored at the symbolic address, X, and
the final result must be stored in the multiprecision
integer addressed by the symbol, FX,

*——————_——_END POLYNOMIAL EVALUATION.
*EE

These statements between the delimiting comments are simply re-enterable
calls to ADDP, MULTP, and EXPP ordered to effect the desired function
evaluation. For example, if N=2*Ni-1, the following sequence will

evaluate equation (1) after appropriate factoring as:
(2) £(x) = xN1=1(x(xN1~1ea))+x (A4 +x(Ay+A2*x)) mod P
:BB

BEGIN POLNOMIAL EVALUATION.

FACTOR X*#N+A1*XA*N]1=X** (N1-1)*(X*(X**(N1-1)+Al))
SINCE IN THIS CASE N WAS CHOSEN SUCH THAT N=2*N1 - 1.

RENTCALL EXPP,EX,NIMI,TI)
RENTCALL ADDP,(T1,Al,T2)
RENTCALL MULTP,%X T2.T2)
RENTCALL MULTP,(T!,T2,T2)
FACTOR A2%X**3+ATRXA*2+AL*X = X* (A4+X* (AI+A2%X)) .

RENTCALI, MULTP (AZ,X,Tli

L

* %W

RENTCALL ADDP,{T1,A3,T1
RENTCALL MULTP, (X,T1,T1
RENTCALL ADDP,(T1,A4,T1)
RENTCALL MULTP, (X.T1,T1)

ADD BOTH FACTORS AND THE CONSTANT TERM.

RENTCALL ADDP,%TI,TZ,ng
. RENTCALL ADDP,(T2,A5,FX

* END POLYNOMIAL EVALUATION.
*EE

* % %

This identity in N, N1 if applied to the distributed version of
Subroutine PURDY, would enable a call to EXPP to be eliminated thus
reducing running time by about 307 (from 7 ms to 5 ms on an IBM
370/168). Refering to the assembler listing note that the PARMWORK
symbols Tl and T2 are used as temporaries, and those corresponding to
the polynomial parameters N, N1, Nl-!, P, X, ete, are initialized before

control passes to statements between the delimiting comments.

Note that in general f{x)=f(P+x) for x=0,1,2,...,(A-1), £(0)=the
constant term (Ag in this example), and f(1)=A;+Aj+Aq+... mod P;
f(1)=264-5?1 for this example, The test deck distributed with
Subroutine PURDY uses the polynomial parameters of this example to

evaluate equation(l).

METHOD AND DISCUSSION

I) Computing Time Advantage

The algorithm used in Subroutine PURDY to evaluate polynomials
f(x) mod P is described in [2]. It essentially capitalizes on a special
case of Knuth”s{3] theorems 4.3.1-A and -B. The running time advantage
of this algorithm over general multiprecision integer division to
compute X*Y mod P grows as the square of the precision; The advantage
for X+Y mod P is substantially greater. In particular, if the routines
ADDP and MULTP would utilize a general multiprecision division routine,
then the execution time for the EXAMPLE function would increase from
about 5 ms to 9 ms on an IBM 370/168.

I1) Enciphering Function Properties

The polynomial enciphering functions were suggested by Purdy{ll].
He has developed breakin time formulae and shows that breakin time by
trial and error is far shorter tham by mathematical methods. The
mathematical soundness of Purdy’s enciphering funections is that .
compu;ing their inverse entails the programming of a congruential
polyndmial root solving algorithm which is yet undiscovered. Even if
such a program existed, Purdy has shown that several years of high-speed
computer time would be necessary to utilize it to break a password.
Trial and error breakin is dependent oun the password length, the number
of used passwords, and the degeneracy of the enciphering fumction.
Assuming 10000 used passwords the expected trial and error breakin time
for 64-bit passwords utilizing Subroutine PURDY to evaluate the EXAMPLE
function is about two months on a 370/168 computer. While it has been
suggested that this time may be reduced by future computing
technology(4), it is also true that typical operating system security as
well as most computer room security offer much less expensive breakin

paths,

-9 -
While such a facility is useful in principle, it is somewhat lacking
from the viewpoint that any potential subsystem user scrupulously or
inadvertently may be able to password protect his neighbors’ unprotected
data sets with only knowledge of its name {and perhaps a logon
sequénce). Assigning unique "initial passwords" to read/write protect
every data set may not only be operationally tedious, but can burden
every subsytem user with repetiticusly specifying passwords on data sets
that are naturally public, e.g. a mailbox, or on data sets that offer
minimal security risks, e.g. a scratch tape. A scheme involving
multiple passwords or reserved data set names to be treated as special
cases add to system overhead and maintenance. This hypothetical
"password paranoia" can be avoided in part by introduction of a third
authorization level, namely "no protection." That is, by assigning a
password to such a data set once, but making its authorization status
"unprotected", the owner renders it thereafter publically readable and
writable without authorization, but retains the key to change the

authorization status. ;

CAPABILITIES AND LIMITATIONS

1) General.

This version of Subroutine Purdy supports 64-bit passwords (NP=2,
Q=64). The algorithm in general requires that ¢ be an exact multiple,
NP>1, of the number of bits in an integer machine word. Extending the
algorithm for larger passwords requires higher precision-primitivesz]
and correspondingly larger array sizes for multiprecision integers (ie.
vectors of length NP, NP+l, and 2*NP instead of 2,3,4). For degeneracy
to be computable the parameter A for P=2%-A must be chosen to make P
prime; the primality of P is neot checked by the program. Some valid
values for A to force P prime for various values of Q may be found in

Knuth[3].

I11I) Timing Considerations
The routines are listed below with the approximate number of

machine cycles required for linkage and execution (see [2]}.

Program Name Machine Cycles
PURDY(as distributed) 84840
ADDP 440
MULTP 1160

EXPP 39000

INFORMATION REQUEST

IN ORDER TO ASSESS USABILITY OF SUBROUTINE PURDY.
YOU ARE KINDLY REQUESTED TO FILL OUT, FOLD, STAPLE AND
RETURN THIS SHEET 7O THE AUTHOR (ADDRESS ON REVERSE),

NamME, AFFILIATION, TITLE AND ADDRESS:

**

COMMENTS:

