SHARE PROGRAM
LIBRARY AGENCY

HHHHHHHHHHHHH

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
5555555555555

SHARE Program Library Agency

Triangle Universities Computation Center
P. 0. Box 12076

Research Triangle Park, N. C. 27709

HARE PROGRAM LIBRARY SUBMITTAL FORM

CONTROL NUMBER :

‘his fuem should be completed and submitted with the prosram package to the SHARE Program
ibrart Agenuy at the address shown above. Standards and instructions for submitting programs
re in the "SHARE Program Librar: Standards Manual ".

1) Program Number (to be filled in hy SPLA). 3édp“’ Jé ’ g. ¢a4

IBM System 360 (0OS)

2} System Type (achine) . . .

3) Search Ny o v v 0 o s v 0 e b e e e s se s s . .. IN-CORE STACK MANIPULATION FOR
0S/360 ASSEMBLER LANGUAGE PROGRAMS

IBM 5/360 0OS Assembler

e
=

Programming l.anguage . .
Author's Name and Address . -« « v« 4o v v ¢ o« o Roger J Chetwynd

(Wh
—

. . L Technical Assistance Not
) ervc_t‘ [rguirics to Name and Address . o . o o Currently Available _
(if diffe~ent than Author) :

y

7) Title of Program « « « o « « « + « « - . » «_ _In-core stack manipulation package for

use in an 058/360 Assembler Language

environment
8) Submitter's Installation Membership Code. e e e e e s Uy
9) Submitter's Own Program lIdentification and Suffix (optional).,
0) Prirrary Subject Code. « « v v v v v se o s o s 4 s e 4w a e e e b e e s e e 0 6 8
1) Operating or Monitor System Required 05/360
2) New or Revision Code (if revision, show prior Program Number in Item), new
3) Year Completed « « . . e e e e e e e e e e s e e e e e e e e s e . -« 1971

4)Dateo:’Slemittal................................1Auqust1973

3 Documentation (nimber of original pages submitted) . « .+ e e e e e 24

o) Abstract (should contain sufficient information for a reader to determine the value of the
program), Listed on the reverse side of this form are subjects which may serve as a

guide for a descriptive abstract,

Subject Guide:

SHARE PROGRAM LIBRARY SUBMITTAL FORM

, DISCLAIMER
Triangle Universities Computation Center (TUCE)

a. Purpose serves solely as the distribution agent for contributed
b, Programming Language used programs and does not test or maintain them. They
c. Version and modification level or release numbed? qsiouted essentially in the original form sub-

C1d of Licati itted by the author. Neither TUCC nor SHARE, INC.,
d. Field of application . makes any warranty, expressed or implied, as to the
e. Type of routine (main program, subroutine , etc dpcumentation, function, or parformance of the con-

.o s - . . ributed programs,
f. Specific description of machine requirements
.
IABSTRACT

WSUSTACK is a reenterable subprogram which dynamically creates

and maintains core~resident stacks in an 0S/360 Assembler Language

environment, It may be assembled and used on an IBM S/360 under any

version of 0S since release 14,

Stack lengths are limited only by the main storage available to the

task, the size of the stack node may vary from 1 to 256 bytes and is

constant for a given stack, and any number of stacks may be maintained

concurrently.

As one of the design objectives was optimization of storage and

execution time, the calling sequences are non-standard, Accordingly a

companion set of macro instructions is provided to generate the proper

calling sequences. The functions available, each of which is called by

a corresponding macro instruction, are: Allocate and initialize stack,

Delete stack, Stack a node, Unstack a node, Reset stack to the empty

condition, Index stack (locate n'th node), Search stack (locate a node

satisfying given conditions).

i
|
{

0

\
kPlease attach additional pages if necessary). Total pages attached —_

Permission to Publish

"I hereby give the SHARE Program Library Agency permission to reprint, reproduce,

(17} Signature of Submitter and Date Pvﬂ -
/

(18) Signature of Installation Addressee

and distribute this program."

Cerk, § L egart 1973
: Cuy)

Program 360D-06.8.004 NO LABEL
TAPE DISTRIBUTION:

80 character records blocked 8000.
Density as ordered.

CONTENTS:

File 1 WSTK
File 2 STML

A
|

WSUSTACK

A utility for handling unlimited=-length core-resident
stacks in an 08/360 Assembler Language environment.

Programming and Documentation by:

Roger Chetwynd

Computer Science Department
Washington State Univetrsity
Pullman, Washington 99163

Disclaimer:

Although this program has been tested by its author, no
warranty, expressed or implied, is made by the author or by
Washington State University as to the accuracy and functioning
of the program and related program material, nor shall the
fact of distribution constitute any such warranty and no
responsibility is assumed by the author or by Washington State
University in connection therewith.

The author, however, will appreciate being notified of any
errors, inaccuracies, or omissions in program or documeniation,
so that corrections may be included in future revisions,

Acknowledgement:

The author is indebted to Washington State University
for providing the computing facilities on which this program
vas developed,

-

Contents: Page
I - Introduction 2
II - The Macro Instruction Set 4

(a) General 4
(b) GTSTK 5
(c) DLSTK 7
(d) STACK 8
(e) UNSTK 9
{f) CLSTK 10
(g) IXSTK 11
{h) SHSTK 13
Appendices
A « Abnormal Terminations 16
B ~ Cxamples 17
C = Internal Data Structure 20

D - Implementation Guide 22

hY

Ny

I - Introduction

WSUSTACK consists of a single load module with the same name
which creates and maintains core-resident stacks by means of
calls generated by a companion set of macro instructions. The
stacks are limited in length only by the main storage available
to the task. The size of the stack node may vary from 1 byte
to 256 bytes, and is constant for a given stack. Any number of
stacks may be maintained concurrently.

The stacks are maintained internally in the form of a
stack descriptor and a number of stack sections, each section
having space for a predetermined number of nodes plus four words
of linkage and other information. Only as many sections are
kept as will contain the current number of nodes; an overflow of
+he current section will cause a new section to be obtained,
and an unstack of the one node remaining in a section will cause
that section to be released., GETMAIN and FREEMAIN type R are
used, thus an attempt to obtain a new stack section when no more
main storage is available will cause the task to be abnormally
terminated with a system completion code of 80A., The first node
in each section lies on a doubleword boundary, thus node
alignment is consistent with node size,

The code of the module WSUSTACK is reentrant, thus no
problem of attributes will be encountered in linking WSUSTACK
to other modules.

Standard 0S linkage is assumed; the calling program must
supply the address of an 18-word save area in register 13, '

The module and macros have been designed together for
efficiency of both storage and time in the management of the
stacks, thus it is imperative that the module be accessed only

by the macro instructions.,

The functions available are summarized in the following

table, and are described in detail in section II.

Funetion Macro Instruction Registers Alteredt>?
Allocate and Initialize GTSTK 14,15,0,1
Stack
Delete Stack DLSTK 14,15,1
Stack a Kode STACK 14,15,0,1
Unstack a Node UNSTK 14,15,0,1
Reset Stack CLSTK 14,15,0,1
Index Stack IXSTK 14,15,0,1,cc
Search Stack SHSTK 14,15,0,1,FPR0O,cc’

Note 1: All other registers are unchanged by execution of the
macro instruction.

Note 2: The condition code is unchanged by execution of the
macro instruction, with the exceptions of IXSTK and SHSTK
for which the condition code is set to indicate termination
conditions.

Note 3: General Register 0 or Floating Point Register 0 are
altered depending on the form of the macro-instructionj

see detailed description in part (h).

(' II - The Macro Instruction Set

(a) General:

All operands of the macro instructions are optional, with
default values described under the appropriate instruction.
The operands "stackadr" and "vconadr" which are common to

many of the macro instructions are described here:

stackadr - is either: an absolute or relocatable expression

specifying the address of a fullword whose
low-order three bytes contain the address of
the stack descriptor,

- or: an absolute expression enclosed in parentheses
specifying one of the general registers 0 through
15 whose low-order three bytes contain the
address of the stack descriptor.

- If omitted, the address of the stack descriptor
is assumed to be contained in register 1.

veconadr - is either: an absolute or relocatable expression
specifying the address of a fullword whose
low-order three bytes contain the external
address of WSUSTACK,
. - or: an absolute expression enclosed in parentheses
A specifying a general register other than 1
.

whose low-order three bytes contain the address
of WSUSTACK.

If omitted, the literal =V (WSUSTACK) 1is generated.

-

(b) The GTSTK Macro Instruction:

< The GTSTK macro instructian causes allocation and

initialization of a stack with specified attributes.
Positional operands (in order):

vconadr - see section II(a) - register 0 must
not be specified.

Keyword operands:

SIZE= - a number from 1 through 256, specifying the
size in bytes of the stack node.
- If omitted, SIZE=4 is assumed.

NODES= - either: a number greater than zero specifying
the maximum number of nodes in a stack
section (see note 1),

- or: written as NODES=(0), indicating that
register 0 contains the proper parameter
information as described under the MF=E
operand. In this case the SP= operand is
ignored.

- If omitted, NODES=60 1is assumed.

SP= - a number from 0 through 127, specifying the
subpool from which the stack sections
obtained by GETMAIN are to be taken.

: - If omitted, SP=0 is assumed.

L/ - If NODES=(0) is coded, the SP= operand is

ignored.

= - specifies the format of the macro expansion.
Standard form: parameter omitted.
If the values of SIZE, NODES, and SP require
it, an in-line parameter list is generated
along with the executable code.
List form: MF=L
The parameter list alone is generated, which
is intended to be used as a remote parameter
list in conjunction with the execute form
of the GTSTK macro instruction.
Execute form: two forms, MF=(E,adrs} and MF=E
(i) - MF=(E,adrs) - In this case, "adrs"
is elther: an absolute or relocatable
expression specifying the address
of a remote parameter list,
or: an absolute expression enclosed in
parentheses specifying a general
register from 1 through 15 containing
the address of a remote parameter
list.
(Li1) - MF=E - In this case 1t 1is assumed that
registers 0 and 1 already contain the
o~ proper parameter information and the
(,} SIZE, NODES, and SP operands are ignored.
The registers must have the following
form:
Reg 0 - bits 0-7: subpool number
bits 8-31: SIZE*NODES+40
Reg 1 - bits 0-31: SIZE parameter

The GTSTK macro instruction generates a call to an entry
point in the module WSUSTACK, which obtains core for and
initializes the 24-byte stack descriptor and the first stack
section. The first node in the stack is designated the null
node and is cleared to zero. If this entry point in WSUSTACK
receives either in register 1 a number not in the range 1 to
256, ér in register 0 an amount of storage greater than 32791
or a subpool number greatexr than 127, the task will be
abnormally terminated with a user code of 104 and a core dump.

On return, the registers and condition code are as

follows:
Reg 14 - address of instruction following macro expansion
Reg 15 - address of the cleared null node.
Reg 0 - index of the null node (=1).
Reg 1 -~ address of the stack descriptor for the new stack.
Reg 2-13 - as before execution of the macro.

cc - as before execution of the macro.

Note 1l: The value of NODES should be chosen so as to utilize
both storage and time most efficiently. If it is too small,
the many resulting stack section overflows will consume
execution time; if it is too large, there will be considerable
wasted space. It should be borne in mind that the size of
each stack section is (NODES*SIZE+16) bytes and that this
quantity must not exceed 32767.

(c) The DLSTK Macro Instruction:

N The DLSTK macro instruction releases the main storage

occupied by a stack initially obtained by use of the GTSTK

macro instruction.

Positional operands (in order):
stackadr - see section II(a).
vconadr - see section II(a).

Keyword operands:

SP= - written as either: SP=X, indicating that the subpool
assigned to the specified stack is owned
exclusively by that stack and thus the stack
can be released much more quickly by a
FREEMAIN of the entire subpool,

- or: SP=S, indicating that the subpool assigned to the
specified stack is shared with other requests,
preventing the stack from being released by
a FREEMAIN of the subpool.

If omitted, SP=S is assumed.

The operand is meaningless and should be omitted in

the case of subpool zero.

The DLSTK macro instruction generates a call to an entry
point in the module WSUSTACK, which releases all main storage
obtained for stack sections and the stack descriptor for the
specified stack.

On return, the registers and condition code are as
follows:

Reg 14 address of instruction following macro expansion.

Reg 15 - not useful (an address internal to WSUSTACK) .

Reg 0 - as before execution of the macro.

Reg 1 - not useful (the address of the deleted stack
descriptor).

Reg 2-13 - as before execution of the macro.

cc - as before execution of the macro.

Programming note: A FREEMAIN of an entire subpool will also

delete any stacks assigned to that subpool.

-~
W

(d) The STACK Macro Instruction:

The STACK macro instruction adds a new node to the top of

the specified stack.

Positional operands (in order):
stackadr - s3ee section II(a).
veconadr - see section II{a).

Keyword operands: none.

The STACK macro instruction generates a call to an entry
point in the module WSUSTACK, which adds a new node to the top
of the stack identified by the first parameter. If a stack
section overflows, a new one 1s obtained and initialized. The

new node is not cleared to zero or initialized in any way.

On return, the registers and condition code are as

follows:
Reg 14 - address of instruction following macro expansion.
Reg 15 - address of new top node.
Reg 0 - index of new top node, = number of nodes in stack.
Reg 1 - address of the stack descriptor.
Reg 2-13 - as before execution of the macro.
cc - as before execution of the macro.

Programming note: Obtain a new node at the top of the stack

before transferring any data to it.

N4

(e) The UNSTK Macro Instruction:

The UNSTK macro instruction removes a node from the top

of the specified stack.

Positional operands (in order):
stackadr - see section II(a).
vceonadr - see section II(a).

Keyword operands: none.

The UNSTK macro instruction generates a call to an entry
point in the module WSUSTACK, which removes the ncde at the top
of the stack identified by the first parameter. If a stack
section becomes empty, its storage is released. An attempt to
unstack the null node will result in abnormal termination of

the current task with a user code of 100 and a core dump.

On return, the registers and condition code are as

follows:

Reg 14 - address of instruction following macro expansion.

Reg 15 - address of node appearing at top of stack after
the unstack operation.

Reg 0 - index of top node, = number of nodes in stack,
after the unstack operation. .

Reg 1 - address of the stack descriptor.

Reg 2-13 - as before execution of the macro.

cc - as before execution of the macro.

Programming note: Retrieve the contents of the top node before

unstacking it.

(£) The CLSTK Macro Instruction:

The CLSTK macro instruction resets the specified stack to

the null condition.

Positional operands (in order):
stackadr - see section II(a).
veconadr - see section II(a).

Keyword operands: none.

The CLSTK macro instruction generates a call to an entry
point in the module WSUSTACK, which releases storage occupied
by all stack sections except the first, resets the top-of-stack
pointer to point to the null node, and clears the null node to
zero. The stack then appears just as it did immediately after

being created with the GTSTK macro instruction.

On return, the registers and condition code are as

follows:
Reg 14 - address of instruction following macro expansion.
Reg 15 - address of the cleared null node.
Reg 0 - index of the null node (=1).
Reg 1 - address of the stack descriptor.
Reg 2-13 - as before execution of the macro..

cec - as before execution of the macro.

10

(g) The IXSTK Macro Instruction:

Reg 2-13 - as before execution of the macro.
cc - 1.

11

(:# The IXSTK macro instruction finds the n'th node in the
specified stack for a parameter n.
Positional operands (in order):
stackadr - see section II(a).
index - is either: an absolute or relocatable expression
with a displacement value less than 4096
specifying the index n,
- or: an absolute expression enclosed in parentheses
specifying a general register other than 1
which contains the index n.
- If omitted or zero, the address and index of the
current top-of-stack is returned.
vconadr - see section II{(a). Register 0 must not be
specified. This parameter is ignored if
the second parameter is omitted.
Keyword operands: none.
The IXSTK macro instruction generates a call to an entry
o point in the module WSUSTACK, which uses the input parameter
\v; n to index the stack and returns the address of the n'th node.
When the second parameter is missing, however, no call is
. generated; the address and index of the current top node are
returned.)
On return, the registers and condition code are as
follows:
Case (i) - second parameter present and non-zero:
Reg 14 - address of instruction following macro
expansion.
Reg 15 - successful index: address of indexed node.
- unsuccessful index: address of WSUSTACK.
Reg 0 - index of node.
Reg 1 - address of stack descriptor.
Reg 2-13 - as before execution of the macro.
cc - successful index: 0.
- unsuccessful index (index out of range): 2.
Case (ii) - second parameter present and Zero:
Reg 14 -~ address of instruction following macro
expansion.
» Reg 15 - address of node at top of stack.
‘L} Reg 0 - index of top node, = number of nodes in stack.
Reg 1 - address of the stack descriptor.

12

Case {iii) - second parameter omitted:
Reg 1-14 - as before execution of the macro.
Reg 15 - address of current top-of-stack.
Reg 0 - index of current top-of-stack.
cc - as before execution of the macro.

Note: The statement
IXSTK STACK,O
returns the same information as the statement
IXSTK STACK
However, omitting the second parameter destroys fewer registers
and cmits the call to WSUSTACK, thus the second statement is

recommended when the address and index of the current top-of-

stack is desired.

13

(h} - The SHSTK Macro Instruction:

The SHSTK macro instruction causes a search of the nodes
in the specified stack for a match under given conditions with

a given key.

Positional operands (in order):
stackadr - see section II(a).

vconadr - see section II(a). Register 0 must not be
specified in the cases of MODE=CLC,C,CL,CH.

Keyword operands:

MODE= - the instruction and type of key to be used in the

search.

MODE=CLC - the key is a sequence of bytes in core.

MODE=CLI - the key is a single byte of immediate data.

MODE=C - the key is a 4-byte fixed-point signed quantity.

MODE=CL - the key is a 4-byte fixed-point unsigned
quantity.

MODE=CH - the key is a 2-byte fixed-point signed
gquantity.

MODE=CE - the key is a single-precision (4-byte)
floating-point number.

MODE=CD - the key is a double-precision (8-byte)

. floating-point number.

Note: Compare Decimal (CP) is not supported at present.

KEY= - the location or value of the key.
For MODE=CLC, the operand is
either: an absolute or relocatable expression
specifying the address of the beginning of the
key,
or: an absolute expression enclosed in parentheses
specifying a register other than 1 which
contains the address of the key.
If omitted, the address of the key is assumed to
be in register 0.
For MODE=CLI, the operand 1is
either: an absolute expression specifying the
8-bit quantity to be used as key,
or: an absolute expression enclosed in parentheses
specifying a register other than 1 whose
low-order byte contains the key.
If omitted, the key is assumed to be in the
low-order byte of register 0.
For all other modes, the operand is
either: an absolute or relocatable expression
specifying the address of the properly
aligned storage location containing the key,
or: an absolute expression enclosed in parentheses
specifying a register other than 1 (floating-
point register in the cases of MODE=CE or CD)
which contains the key. Note; If MODE=CH,
the halfword quantity in the register must
have its sign bit properly extended.
If omitted, the key is assumed to be in register
0 (floating-point reg 0 for MODE=CE or CD).

14

COND= - the condition of compare for successful search.

DISPL= -

LEN= -~ an

The search is successful if the node satisfies
the given relation to the key. Permitted
relations are:

EQ - search on egual,

NE - search on not egual,

GT - search on greater than,

LT - search on less than,

GE - search on greater than or equal to,

LE - search on less than or egual to.
*If omitted, COND=EQ 1is assumed.

an absolute expression specifving the displacement
from the beginning of the node to the beginning
of the field to be examined. If omitted, DISPL=0
is assumed.

absolute expression specifying the length of the
key. This operand is examined only in the case

of MODE=CLC; in all other cases the length of the
key is implied by the mode chosen (1 for CLI,

2 for CH, 8 for CD, 4 for all others). If omitted
in the case of CLC, LEN defaults to the size of
the stack node (the SIZE= parameter in the
associated GTSTK macro instruction).

The SHSTK macro instruction generates a call to an entry

point in the module WSUSTACK, which performs the requested

compare node b
conditions are

parameters rec

v node from the top of the stack down until the
satisfied or the null node is reaqhed. If the

eived by this entry point are such that an

alignment error may occur or a compare is requested on a field

outside the no

a usery code of

On return
follows:

Reg 14 -
Reg 15 -
Reg 0 -
Reg 1 -
Reg 2-13
cc - succ

de, the task will be abnormally terminated with

108 and a core dump.

, the registers and condition code are as

address of instruction following macro expansion.
successful searcn: address of node satisfying search.
unsuccessful search: address of null node.
successful search: index of node satisfying search.
unsuccessful search: zero.

address of the stack descriptor.

- as before execution of the macro.

essful search: 0.

- unsuccessful search: 2.
FPR 0 - the key, if MODE=CE or CD, otherwise as before

execution of the macro.

Notes:
1. It is possible for the null node to satisfy the search.
2. To avoid a possible alignment error, in cases other
than MODE=CLC the key length must be a factor of the
node size.
3, To avoid a possible out-of-range error, the explicit or
implied values of DISPL and LEN must sum to a value

which is not larger than the size of the node.

15

Appendix A - Abnormal Terminations

In order to cbhtain the core dump, a SYSUDUMP or SYSABEND DD card
must be included,

U 100 - from UNSTK - indicates an attempt to unstack the null node,.

Contents of the registers and condition code at time of
abend are:s

Reg 14 - address of instruction following macro
expansion

Reg 15 - address of stack descriptor

Reg 0 - as before execution of macro

Reg 1 - abend codes

Reg 2-13 - as before execution of macro

cc - as before execution of macro

4 104 - from GTSTHK = indicates invalid parameter information.

Contents of the registers and condition code at time of
abend are:

Reg 14 - address of instruction following macro
expansion
Reg 15 = node size
Reg 0 =~ subpool number (1l byte), GET!AIN amount (3 bvtes)
Reg 1 - abend codes
Reg 2-13 - as before exccution of macro
cc: 0 = node size = 0
1 « node size less than zero
- or subpeool number greater than 127
2 - hode size greater than 256
- or reg 0 # NODES*SIZLE+40
- OF NODES*SIZE+40 greater than 32791

U 108 - from SHSTK - indicates invalid parameter information.

Contents of the registers and condition code at time of
abend are:

Reg 14 - address of instruction following macro
expansion
Reg 15 - address of stack descriptor
Reg 0 - address of key (lIODE=CLC)
~ or key (l1ODE=C,CH,CL)
- Oor as before execution of macro (others)
Reg 1 - abend codes
Reg 2-13 - as before execution of macro
FPR 0 = key (IIODE=CE,CD)
- or as before execution of macro (others)
cct 1 = alignment error
2 - field to be examined lies partly outside
of node (out~-of=range error)

(\ 3

17

Appendix B - Examples

(a)

(b)

(c)

Create a stack, node size = 4, 60 nodes per stack section,

subpool zero:

GTSTK

ST 1,STACKADR
STACKADR DS A

Create the same stack as in example (a), but with the module
WSUSTACK loaded dynamically, and using a remote parameter
list for GTSTK:

LOAD EP=WSUSTACK
ST 0 ,ASTAKER

GTSTK ASTAKER,MF=(E,LIST)

ST 1,STACKADR
STACKADR DS A
ASTAKER DS A :
LIST GTSTK MF=L

Stack the contents of register 3 on the stack created in
example (b) and save the address and index of that node
for later retrieval:

STACK STACKADR,ASTAKER
ST 3,0(,15)
sTM 15,0 ,INDXSV

INDXSV D& 2F

18

-~ (d) Unstack the two top nodes on the stack created in example
. (b) and load the contents of those nodes into registers

8 and 11 respectively. The address of the current top-of-
stack is unknown.

IXSTK STACKADR

L 8,0(,15)
UNSTK STACKADR,ASTAKER
L 11,0¢(,15)

UNSTK (1) ,ASTAKER

(e) Replace the contents of the node stacked in example (c¢)
with the contents of register 4.

L 15 ,INDXSV

ST 4,0(,15)
or.:
Y L 0, INDXSV+4

IXSTK STACKADR, (0) ,ASTAKER
ST 4,0(,15)

(f£) Search the stack created in example (b) for a compare logical
equal with the contents of register 6.

SHSTK STACKADR,ASTAKER,MODE=CL,COND=EQ,KEY=(6)
BNZ NOTFOUND
ST 15,SAVEADR

NOTFOUND routine if search unsuccessful

.

SAVEADR DS A

»

(g)

(h)

(1)

(3)

Retrieve the contents of the second node from the top of
the stack created in example (b).

IXSTK STACKADR

S 0,=F'1'
IXSTK STACKADR, (0) ,ASTAKER

L 5,0(,15)

Check before unstacking that the null node will not he
unstacked.

IXSTK STACKADR
BCT 0, UNSTACK
routine for attempt to unstack null node

UNSTACK UNSTK STACKADR,ASTAKER

Clear the stack created in example (b).

CLSTK STACKADR,ASTAKER

Delete the stack created in example (b).

DLSTK STACKADR,ASTAKER

1%

20

Appendix C - Internal Data Structure

N

(a) Stack Descriptor and First Scction:

Displacement Displacement Length Contents

(descriptor)

0

12
16

20

24
28

32

36
40

(b) Subsequent sections:
Displacement Length

0
4

12
16

(first section)

12
16

6 Compare instruction for
SHSTK

2 BCR instruction for SHSTK

1l Subpool number

3 S8ize of stack section

4 Node size (bytes)

4 Address of node at top
of stack

4 Number of nodes in stack

(including null node)
Address of highest section

Address of highest available
node in this section

4 Number of meaningful nodes
in this section

4 Address of next higher section

)

First (null) and subsequent
nodes

Contents

4
4

Address of next lower section

Address of highest available node in
this section

Number of meaningful nodes in this sectiocn
Address of next higher section
Nodes in this section

TN

21

(c) Details of bytes 0-7 in stack descriptor on entry to SISTK:

1 ©2
5 o0 |a. a,lo 7 e F

Byte 0: Operation code for compare -
MODE= : CLC CLI C CL CH CE CD

aja = D5 95 59 55 49 79 69
Byte 1: L field (CLC); Iz field (CLI): R1l/X2 fields (others) -
MODE= ble
CLC, LEN given LEN=-1
CLC, LEN not given unspecified
CLI key
¢, CL, CH 50
CE, CD 00

Byte 3: Displacement of field in node (DISPL parareter)

Byte 5: LEN specification flag (MODE=CLC only);
eventually set to zero as displacement of key -

LEN given: - d,d,=00
LEN not given: dld2=FF
Byte 7t Condition and branch register -
COlD=% EQ NE GT LT GE LE

e (MODE=CLC or CLI): 6 8 C A 4 2
e (MODE= others): 6 B A C 2 4

22

Appendix D = Implementation Guide

1, Environment considerations:
_ WSUSTACK will operate under any version of 05/360
which uses the current (since release 14) calling
sequences for R-type GETHAIN and FREEMAIN (SVC 10) and
for ABEND (SVC 13}, To optimize the ccde, the IB!1 macros
are not used; the parareter structures for the SVC's are
maintained implicitly or calculated as nceded.

Both the source module WSUSTACK and code incorporating
macro calls to WSUSTACK will asserble correctly under
IBIi's Assembler level I,

The assembled source module may be linkedited with
the RENT and REUS attributes.

2, Testing history:
WSUSTACK was dveloped and tested at Washington State
University on an IB! System 360 Model 67-I, under OS/IWVT,
It has been used extensivelv in compiler-writing classes
at Washington State University, and no errors or problems

have been reported,

3, Deck key:

The program package supplied consists of an assembler
source program and nine macro definitions, in tweo EBCDIC
card decks =
Deck #l1 - assembler source deck

- identification = VWSUSTACK

- 337 cards, numbered WSTK000l to WSTK0337
in columns 73 to 80

- deck contains one asserbler source prograrn,
without control cards (JCL}

e

A

23

3, Dbeck key {(continued):
Deck 42 =~ macro library
- identification = WSUSTKIL

- 229 cards, numbered STIL000l to STML0229
in columns 73 to 80

-« deck contains nine (9) macros in alphabetical
order, each preceded by one IEBUPDTE utility
control statement in the following form:

/. ADD LIST=ALL,LEVEL=00,SOURCE=0,
NAME=macronanc

The nine macros supplied are the following:

CALSTK (inner macro only) - 20 cards

CLSTK -~ 5 cards
DLSTK -~ 12 cards
GTSTK - 62 cards
IXSTK -~ 18 cards
RJCRG (inner macro only) = 12 cards
SHSTK - 81 cards
STACK = 5 cards
UNSTK -~ 5 cards

4, Local implementation changes
(a) Different macro names =
If different names for the outer macros are
desired, all that is necessary is to change the
macro names on the corresponding prototype statements
(as well as including the macros in the macro
library under the desired nanes), and altering the
documentation accordingly.
1f different names are desired for the inner
macros (CALSTI., RJCRG), the above must be done, and
in addition all inner macro calls done by the outer
macros must be updated to reflect the alteration,

24

4, Local implementation changes (continued):
(b) Different module nane =

If it is desired to change the name WSUSTACK
to some other name, two things must be done before
assembling the source and creating the macro library.
First, change the second statement in WSUSTACK
from

WSUSTACK CS5CCT

to

newnane CSECT
WSUSTACK EQU *

and second, change the literal =V(WSUSTACK) in the
CALSTK nacro to =V (newnane) .

5. Some estimnated timings:
Timings are given in microseconds, and do not include
the time for executing instructions in the macro expansion,
Data pertains to the IB! 5/360 model 67-I, and is extracted
from IBM System 360 HModel 67 Functional Characteristics,
form number GA27-2719-1,

STACK - no scction overflow: 17,84
-~ section overflow: 29.42 + time for GETHAIN

UNSTK = no section underflow: 17.34 + .4b
- section underflow: 23,51 + time for FREEMAIN
IXSTK ~ index in range: 21.76 + 2,9k + ,8Db
- index = 0: 9.53 + .4b
- index out of range: 3,6
« where: b = 1 if save area (reg 13) lies on a doubleword
boundary,
0 if save area lies on a fullword not a
doubleword boundary:
k = number of section boundaries passed to access

the node (if the node is in the first
section, k = 0).

