SHARE PROGRAM
LIBRARY AGENCY

HHHHHHHHHHHHH

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEE




SHARE PROGRAM LIBRARY SUBMITTAL FORM SHARE PROGRAM LIBRARY AGENCY

Triangle Universities Computation Center

Post Office Box 12076

Research Triangle Park, North Carolina USA 27709

i

SPLA CONTROL NUMBER: 242

{1} Program Number (tobf.:fiiledbySPLA). Coe 360D — 15,1, 009
. NDTRNZ

(2} Title of Program .

(3} System Type(s) (Machiney. . . . . . . . . _ _IBM series 360/370

{4)  Search Key(s) .

1968 ANSI FORTRAN

{(8)  Programming Systemns/Languages

(6)  Primary Subject Code . e e e e
Minimum System Requirements 126,000 byte partition plus 5000 x80 direct access disk area

(7)

(8)  New (N} or Revision (R) (if revision, show prior Program Number in item 1) N

{9 Date of Submittal

{10} Documentation {number of original pages submitted) e e .
{11} Author's Name and Address . . e William I. Davisson & John J. Uhran Jr,

University of Notre Dame » Economics Dept,
Notre Dame, Indiana 46556

(12) Direct Technical Inguiries to Name & Address W.1. Davisson V J.J. Uhran Jr.
(if different than Author) Economics Dept. Dept. Elect. Engr.
Univ. Notre Dame Univ. Notre Dame

Notre Dame, Indiana 46556 Notre Dame, Indiana 46556

(13} Submitter's Installation Membership Code

{14) Abstract (should contain sufficient information for a reader to determine the value of the program). Listed on the re-
verse side of this form are subjects which may serve as a guide for a descriptive abstract,

DISOLAIMER

harsities Computation Cantar (TUCC)
.o:::ﬂolms the distribution agent for contributed
SPLA 1001 Ravised 1176 progrems and does not test or maintain them. They
are_distributed assentially In the origingl form sub-
mitted by the authar, Meither TUCC nor SHARE, INC.,
makes any warrantyXexpressed or implied, as to the
documentation, function, or performance of the con-
tributed Broarams.




SHARE PROGRAM LIBRARY SUBMITTAL FORM
Subject Guide:

Purpose

. Pragramming Language used

Version and modification level or release number
. Field of application

Type of routine {main program, subroutine, etc.)
Specific description of machine requirements

e < T -

NDTRNZ2 is a continuous and stochastic simulation and modeling lanquage.

NDTRN2 has three inteqration methods, syntax diagnostic checking,

execution time diagnostic checking as well as a wide range of print

and plot options. A1l of these are control-card options. NDTRN2 will

do_a wide range of continuous and stochastic simylations including

the specific SYSTEM DYNAMICS type of models.

NDTRN2 has been developed using the 1968 version of ANST FORTRAN.

A twenty bage implementation guide is included describing installation
on ajl IBM ., and most digital equipment corparation computers.

DISCLAIMER

G
GIMpot
Thengle UniveaNe R dtion agent for contribute

gerves solely as the d‘f tast or maintaln them. Tr

gro distributed essentizly i
mitted by the author

a -
g‘ocumenlatlon. function,

de programs.
***** please note implementation guide for additional information.

. T TS
{Please attach additional pages if necessary) . * . * Total pages attached

An “Acknowledgement of Assistance” staterment must be attached to this Submittal Form,

Permission to Publish

"l hereby give the SHARE Program mﬁo reprint, rep:fuce, d distribute this program"
{15) Signature of Submitter and Date 3 ” & ’ WM

r
{15) Signature of Installation Addressee

SPLA 1001 (R} Revisad 11.76

xi




NOTRANZ - IMPLEMENTATION MANUAL

. Description of NDTRAN2 page
- Test programs included with NDTRAN2
. Direct Access Disk File: Structure and Use of
Overlay
. Size of COMMON data in Program
Loading NDTRAN2 on your computer:
A) IBM 370 - large computers-- 0S Systems 17
B) 1BM 370 - small computers - DOS Systems 18

L L N = B o T+ ~ B -8
— —
Ty O O ds W -

For additional information:

William I. Davisson John J. Uhran Jr.

Department of Economics Department of Electrical Engineering
University of Notre Dame University of Notre Dame

Notre Dame, Indiana 46556 Notre Dame, Indiana 46556

Phone: 219 - 283 - 7021 Phone: 219 - 283 - 7423

University of Notre Dame
1980

| CBc







NDTRANZ - IMPLEMENTATION MANUAL

The enclosed magnetic tape ( or cards) include the interpréter
NDTRANZ along with 43 test programs. These programs include the WORLD3
model discussed in LIMITS TO GROWTH and DYNAMICS OF GROWTH IN A FINITE
WORLD.* The programs included include some illustrative programs that
are discussed in Chapter 7 of the NDTRANZ Manual, a substantial number
of test programs ( some of which are discussed in Chapter 6 ) of the
NDTRANTZ Manual.

A, Description of NDTRAN2
NDTRAN2 is a dynamic simulation interpreter capable of carrying out
dynamic and stochastic simulations. It is available in two basic
versions:
1) A research version that wiil accept a source simulation
program of up to 4000 statements.
2) A standard version which has the capability of
executing programs somewhat larger than WORLD3
and which will operate on a computer with a 28K
FORTRAN batch partition, such as the PDP 11 series
computers.,
The standard version is avajlable in a DOUBLE
PRECISION version or a SINGLE PRECISION version
depending on the requirements of the computer
at the installing college or university. All
versions sent to installations with PDP 11 series
computers are single precision, requiring the half-

word integer option.




The source program for NUTRANZ is approximately 13,000 statements

in length of which about 8,000 are COMMENT cards which constitute the

basic documentation for the NDTRAN interpreter itself. It is very

important that you read the COMMENT statements in the main program

NDTRN, since this contains a number of parameters which must be

set for the installation computer.

A number of changes have been made in NDTRANZ as compared with

NDTRAN. The major changes are as follows:

1.

A change was made in the execution modules whereby
the manner of determining the TIME variable was
improved and made consistent with the method of

integrating the other variables in NDTRAN2.

. The code was documented with COMMENT statements.
. The capacity of the NDTRAN2 standard version will

fit on the same size computer and the same core
partition as NDTRAN, but NDTRAN2 will handle a

considerably larger model (optimization).

- NDTRANZ is considerably faster than NDTRAN ( both

using the CHECK option). Depending on the size and
nature of the simulation being run, NDTRAN2 appears

to be about 100 percent to 500 percent faster than
NDTRAN.

NDTRANZ has a CHECK and NOCHECK option. The CHECK option
checks for execution-time errors as described in

APPENDIX C of the Users Manual. For programs that are




known to be error-free, the user may opt for the NOCHECK
option which wiil provide considerably faster execution
times ( as compared with the CHECK Option);

6. NDTRANZ has a comparative plot feature for program RERUNS.
Rerunning the program, the user may compare the value of
variables across all RUNS using the Comparative PRINT
and PLOT feature,

7. NDTRANZ has full documentation capability for any
user program.

8. NDTRANZ permits change of integration method with reruns.

9. The table functions have been improved and made considerably
more efficient.

10. If the user obtains the NDTRAN2 standard version and(with.
sufficient core on the computer) may change to the

research size version of NDTRANZ.

B. Test Programs

We found out from our experience with NDTRAN, that users desired
more test programs. Therefore we have included on the magnet?c tape
with NDTRANZ a total of 44 test programs including many of the standard
short programs shown in the manual. We have also include a few major
simulation models including the CEDAR LAKE MODEL and WORLD3 , including
the overall model and the individual segments or modules of WORLD3
such as the POPULATION module. These have been done with the approval
of DENNIS MEADOWS of Dartmouth. A1l documentation for WORLD3 medels
are available through MIT Press or from Meadows at Dartmouth College.

The sources are LIMITS TO GROWTH and DYNAMICS OF GROWTH IN A FINITE WORLD.




The order of the test pragrams on the magnetic tape is shown on the
figure on the following page. the test programs are, respectively, in
separate files that are numbered. Each file contains a file number
and a name. The test programs may be retrieved from the magnetic

tape using the appropriate file number and name.

C. Direct Access Disk File

NDTRAN and NDTRANZ were both designed to operate on a small computer,
one with limited core capacity. Since the core was Timited it Was hecessary
to use the disk file for intermediate storage. Thus NDTRAN2 can handle
quite large programs using the intermediate storage file. The manner
in which the computer you have handles the disk file can have a significant
impact in determining the run-time of your programs.

Our experience has been that all IBM systems require that any
direct access disk file be completely formatted before the file may be
used, regardless of the size of the program being executed. Therefore
on IBM systems ( and computers with 1ike operating characteristics)
the time that it takes to format the file will be added to the CPU time
for the first run.

For instance, a small program ( 1ike the CLIFF test program)
executing on our IBM 370/168 using the research version of NDTRANZ has
the capability of handling a simulation program with 4000 statements.
When the computer formats that file in order to execute any program
the charge for the CLIFF program is about $28.00. When the CLIFF
program is run a second time against that file the charge is about

15 cents. A1l persons using IBM systems are urged to consider a type
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6
of permanently formatted intermediate file, at least for all large
or research runs. The definition of the DEFINE FILE statement found
in the NDTRN main program , on line 450; is shown on the following
page (page 7). The procedure that we use for executing the research
version of NDTRANZ {is shown on page 8.

You may wish to make some test runs to determine the time that
may be saved on your computer by using the FT01 file as permanently

allocated to your system library.

D. QVERLAY

For all computer installations that do not have sufficient core,
an overlay structure is provided which operates for both the standard
and research versions of NDTRAN2. The following discussion is keyed to the
IBM overlay methods because we are most familiar with them. The actual
procedures to lToad NDTRANZ to different computers ( assuming the
indicated overlay ) are shown in PART F.

There are four regions for the overlay of NDTRAN2. The first
region contains the root segment and the programs that contral
the execution of NDTRAN2. The overlay structure is shown on page 9.
The IBM system, using the REGIONS approach to overlay permits overlay
segments in any given region to be swapped in and out as required.
Thus any of the segments in OVERLAY REGION TWO hay be swapped in and
out as required by any segment in OVERLAY REGION ONE. Unless the REGION
characteristic is used this is not possible.The overlay is structured
( given the subroutines of NDTRAN2) so as to maximize the efficiency of

execution of NDTRANZ2, and to minimize the amount of swapping done.




DEFINE FILE STATEMENT - NDTRANZ 1line 450

The DEFINE FILE STATEMENT assigns unit numbers to and describes

the characteristics of direct access disk files.

DEFINE FILE 1(5?[(‘).0,80,?:%(:3),
a b cd .!L

a) the unit number - direct access I/0 statements will
reference this file described by this statement
using the file number:

READ(1'10) RECORD

unit number
record # 10

storage Tocations beginning
with RECORD(1)

b) the number of records in the file.
¢) the number of integer words per record.

d} FORMAT indicator - U indicates that FORMAT STATEMENTS
will not be used and that data should be written/read as
it is stored in memory.

e) the name of the associated variable - direct access I/0
updates this variable so that it always contains the
number of the record one after the last record written
or read. The associated variable is updated whether it
it used in the I/0 statement or not. If another variable
is used to supply the record number in an I/0 statement
it is not modified.

NDTRANZ does not use the associated variable feature.
If it is not supported the result should be
unaffected.




00010 //FNDTRN&G JOR STy
00020 /7 TIME=2+sREGIDN= uwwz‘zmmrmcmrunu.uw

00030 //S1 EXEC PGM=NDTRANZ2
00040 //STEPLIB BD' DSN=FNDTRN.NDTRANZ.L0ADsDISP=5HR

00050 //FTO1F001 DD DISP=SHRsDSN=ACAD.ND2TRAN

00040 //FTOSF001 DD uwZ!ﬂzquz SOCSEC.DATA»DISF=SHR
00070 //FTO&F
00080 //
READY

Qmm*uzmﬂ*oz of system output - here to line printer

—————— ey -

]

Location of simulation program to be executed by NUTRANZ. Identification
of the Input File, File 5.

The intermediate file used by NOTRAN is a permanent part of

5

— the academic main program. File !. See NDTRN, lines 380 - 450.

Location of the NDTRANZ load module. -- STEPLIG.

n
"4




INSERT MAIN

OVERLAY ONE

INSERT NDTO3

OVERLAY ONE

INSERT NUOTOL»NUTOZyNOTOSyNDTOZ?yNITLIS»NDTL?

OVERLAY ONE

INSERT NRTO4yNDTA8yNOTSOsNDTS1sNDTS2»NDTS3 s NOTS4yNDTSSsNDTS Sy
NDTSE8s NDTSO

OVERLAY ONE

INSERT NDT&1»NDTE2yNDTHSrNDTA7 +NDTAByNDTEP»NDT 76

OVERLAY ONE

INSERT NDT&3sNDT75,NDTB4

ODVERLAY ONE

INSERT NDBT70sNDT71sNDT72sNDT73sNDT74,yNOT79NDTBO

OVERLAY TWO(REGION)

INSERT NDTOS,NDT16sNDTL17:NDT25,NDT246NDT28,NDT38

OVERLAY TWO

INSERT NDTO7+NDT1O0sNDT11sNDT30sNDT31sNDT32yNDTI3sNDTIS NDT36

OVERLAY TWO

INSERT NDT44,NDT77:NDT78,NDT81,NDT82,NDTB83NDTB4yNDTS?

OVERLAY TWO

INSERT NDT&S

DVERLAY TWO

INSERT NDT64

OVERLAY THREE(REGION)

INSERT NDT18,NDT20,NDT27,NDT37yNOTA2,NDTSP?,NDTBS

OVERLAY THREE

INSERT NOT22sNDT46yNDTAZ7+NDTAZ¥NDTSH?7

OVERLAY THREE

INSERT NDTZ4+NDT29+NDT39

OVERLAY THREE

INSERT NDTA4,NDT78,NDT?77

OVERLAY FOURC(REGION)

INSERT NDTO&6yNDT12yNDT1i3+NDT14yNDT23»NDT43,NDTAS

OVERLAY FOUR

INSERT NDT21,NDT34,NDTA0,NDT41

“ND OF DATA

ERIT
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NDTRANZ is basically a two-pass system. The first pass initializes
all variables and does a full syntax check. The second pass does the
execution of the program and provides for program output. For instance
in REGION ONE, the subroutines { other than the root segment) are called
in order:

NDTO3 - initializes NDTRANZ.

NDTO1 and NDTOZ2
checks syntax of all statments in a program.

NOTO4 - provides for all control card options requested.

NOT61 - provides all initial values for the input program
and loads the program.

NDT63 - provides for execution of the program{object code).

NDT70 - provides for printed and plotted output.

If you have any questions on the Overlay information please contact

us.

E. Size of COMMON Data in Program

The arrays and the intermediate file disk in NDTRANZ determine
the amount of core required, the size of the disk space required and
the size of the simulation program that may be handled. There are two
versions of NDTRANZ, the standard version and the research version.

1. For the Intermediate File, Line 450 of NDTRN:
a) standard version:
DEFINE FILE 1(5000,80,U,ASC1)

b} Research version:
Define File 1(38000,80,U,ASCl)

Additional parameters in NDTRN{ main program) must be modified depending
on the computer con which you will implement NDTRANZ2. These parameters are

indicated by COMMEND cards.
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2. For the Array Sizes:

ARRAY NAME STANDARD RESEARCH
PTRS 45 45
TITLE 120 120
CRSET 39 39
OPER 9 9
SYM 15 15
SUBSC 6 6
TYPCT 20 20
EQCHN 80 80
TOKEN 80 80
CARD1 80 80
CARD2 80 80
ERROR 80 80
0BJED 160 160
DEF 80 80
XREF 80 80
TMAP 80 80
FCTN 5,22 5,22
SYMTB 5,512 5,512
LITBL 1024 8192
INITO 5772 21644
CDATA 144 144
OUTPT 240 240
EQSRT 2048 16384
VAR 5000 18705
LINE 120 120
0BJCD 5154 37410
SORT 2048 16384

In the event of size problems, variable VAR may be modified
in size somewhat. This will affect the overall size of the program that
may be executed,

The names of the subroutines and a short comment as to their

functions is shown on pages 12 - 15, below.
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g2
A3

p5
f6
p7

9
19
n
12
13
14
15
16
17
18
19
2P
21
22
23
24
25
26
27

SUB-QUTLINES

input analyzer

expnd processor

initialize FCTN, SYMTB, MACRO records,
pgm context analysis director
statement data area initializer
title processar

control card processor
equation laxical

output lexical/compiler
macro strnt processor

DEF processor

system error msg issuer
lexical error processor
context error processor
table processor

eqn compiler

default DEF generator

RERUN processor

RERUN input processor

Group input error processor
equation chain builder
numeric processor

TMAP element builder
variable syntax

function processor

subscript syntax

variable processor

12




Sub-Outlines (continued page 2.)

28
29
39
31
32
33
34
35
36
37
38
39
a2
41
42
43
44
45
46
47
48
49
59
51
52
53
54

temp storage allocation

TMAP

output field processor

output var processor

plot char processor

output range analyze

plot char default assignments
output delimiter processor

output run no. processor

hash entry routine

left of = symbol processor
EXPND/Macro argument list processor
pack

unpack

argument counter

fixed pt. right yistify numeric output
floating pt. left justify numeric output
integer numeric output routine
object code builder

left context analyzer

right context analyzer

numeric only context

documentor

lével frot

output context

Autoplot expander

Variable alignment




Sub-outlines (continued page 3.)

55
56
57
58
59
6P
61
62
63
64
65
66
67
68
69
79
71
72
73
74
75
76
77
78
79
gg

note card processor
source/diagnostic listings
output monitor - compile phase
cross reference update

title finish

error printing

options handler

eqn ordering

data buffer update
execution-check

execution- nocheck

stato option processor

symbol table listing processor
cross reference option processor
systems analysis routine
output phase

Print .

plot preliminaries

Independent Variable Plot
Time Plot

loader

symbol table tax sort
characteristic computation
Execution Time Qutput Monitor
Plot Extremum Transfer - Default Checking

Plot Extremum Transfer - Rounding




Sub=out]ines(continued

81
82
83
£4
85
3G

87

Flot Character Transfer
Piot i.v. name processing
Sort of data buffers
Prints object code listing

Optimizes object code

not presently implemented
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F. Loading NDTRANZ on your computer

Regardless of the type of computer that you have, the NDTRAN2
interpreter will always be on FILE 1 of your magnetic tape and will
always be named appropriately --i.e., STANDARD, RESEARCH PDP11 , etc.
The overlay information will always be File 2. A1l of the data sets

on magnetic tape will have the same characteristics( with one exception):

9 track 1600 bpi
EBCDIC or ASCII as requested.
LABELED or UNLABELED

DCB parameters will be:

Record Format FB ( fixed block)
Record Length 80 bytes
Block Size 800 bytes.

The IBM procedure for providing the 1ink-edit of the source

NDTRANZ and placing the created load module is shown below, on page 17.

The PDP/11 link-edit materials are shown beginning on page 18
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The program to load NDTRANZ onto your (IBM) system is shown in the two
pages below. The program will compile the source program, overlay the
source code and place the load mondule onto your system. The program
procedure will also execute all of the test programs on your created
load module. After examining the implementation manual, the following

lines should be examined:

40 tape setup: NDTRNZ ,DISPTH

280 source : There are two versions of NDTRANZ2, a standard
version for smaller core sizes and a research
version:

Standard version: label=46
DSN=STANDARD

Research version: 1label=45
DSN=NDTRN2

320 overlay : lines 320 - 370 modify the object module by
adding or concatenating the overlay onto the
object module. You may omit this if you do
not wish the overlay.

430 load module:  You may wish to modify this in order to locate
the load module appropriately on your system.

INTERMEDIATE FILE
NDTRANZ requires a direct access disk file for operation. This
is defined and shown on page 7 of this manual. It is accessed every
time that a model is run. Please see page 4 of this manual for the
definition and use of the intermediate file. The file is reference

on Tine 190 of the procedure on page 18.
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IBM 370 systems with DOS

If you are planning to Joad NDTRANZ onto a system with DOS, the

following information will supplement the information provided for

the 0S installation.

10

2.

Be sure that the INPUT/OQUTPUT unit numbers are
properly set.

It may be necessary to clear the disk before each

run. Apparently under DOS systems, the FORTRAN scratch
areas are used by other systems (COBOL). Some COBOL
programs leave "END-OF-FILE™ marks which cannot

be read by FORTRAN.It may be necessary to institute

a clear dksi procedure or command as part of the
NDTRANZ procedure.

. In some instances that we have been able to identify

the DOS system uses disk files strangely ( to us}. Our
DEFINE FILE statements specified records of 80

words. UNDER DOS they may have to be 320 words in length.
Some implementations noted that with the B0 word length
only one-quarter of the record being used was stored,
and the rest was lost. By changing the DEFINE FILE

card to 320 words, the system operated correctly.
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PREFACE

NDTRAN is a continuous and stochastic system modelling interpreter
designed for use on small computer systems. We originally had as a goal
a system of the size and power of the PDP 11/40 with a 28K FORTRAN |
partition. NDTRAN is written in ANSI FORTRAN and is presently used
on approximately 130 computers at colleges and universities around the
world. The work was made possible by a grant from the Fleischmann
Foundation.

The project was directed by William I. Davisson and John J. Uhran
Jr., both of the University of Notre Dame. All of the programming was
done over a four year period by undergraduates at the University of
Notre Dame. The system was designed and implemented by Daniel A. Poydence
presently with Texas Instruments, Dallas Texas. Other undergraduates |
who worked on the project were Thomas Everman, Gary Pelkey and
Timothy Malioy. Robert Konicek, an undergraduate in the Electrical
Engineering Department is presently working on maintenance. Daniel
Poydence, Timothy Malloy and Robert Konicek are working with the
Directors in maintenance of the final version of the project.

NDTRAN was originally released in 1977. A revised and final
version , called NDTRANZ, has been completed and is released as of
January 1980. Maintenance will be maintained on NDTRAN2. NDTRANZ is
designed to the same specifications as the original NDTRAN but is

several times faster in execution with a number of program enhancements.




This manual is written primarily for NDTRANZ, the final version
of the NDTRAN project. In most instances the syntax of the two
versions is identical. Where there is a difference the information
in the manual text is for NDTRANZ. The information for the first

version called NDTRAN is shown in the box areas as appropriate.

Information for NDTRAN version 1 is shown in the

box areas where syntax or procedures of NDTRAN

differ from syntax and procedures for NDTRANZ.

ii




SYNTAX ERROR MESSAGES

NDTRAN contains a large number of syntax error messages that

appear in the following form:

21 PLOT POS2=2//P0S1=1

5
5

2 ) ek dedke ke

CRITICAL **¥wx NDO502
1) ***** CRITICAL

*hkkk NDO516

The $ sign under a Tocation in the equation Tine indicates that

at that point an error was detected. The error may well have been

made prior to that point but NDTRAN detected the error at that
indicated point. The error messages are sequentially numbered from left
to right. The Teftmost $ sign is number 1 and so on. The error messages
themselves are numbered and the type of error is identified. Each
error message number may be located in the appropriate appendix where
the message explains the error,
The messages are different for NDTRAN and NDTRANZ.

NDTRANZ error messages APPENDIX A
NDTRAN error messages APPENDIX B

EXECUTION TIME ERROR MESSAGES AND EXPLANATIONS
ARE LOCATED IN APPENDIX C.

SYSTEM ERRORS ARE SHOWN IN APPENDIX D.

1
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1.1

Chapter I
System, Model and Simulation

A) Introduction

ModeTing and simulation may be considered a general method for
investigating certain types of problems. However, models can only be
used with respect to a system. Thus, let us define all three.

A System is some part of the real worid independent of size
or function. Examples are amoeba, a criminal court,

a river, an automobile, an automobile accident, a

satellite, a city, etc. Anything may qualify for

a system. While vague, it is appropriate and all

inclusive. A more precise theoretical definition

of a system is the collection of distinct entities

which are all inter-connected and behave in some
goal-seeking way.

There are two approaches to thinking about a system. One may
describe a system by thinking about its function--that is, what it is for.
For example, a building may be considered as a physical method of
protecting man and his activities from the environment. Furthermore,
one might wish to consider the types of activities that could take place

within the physical Timits of the building (system). In short, when
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considering the function of the system one considers the function of the
system in relation to man.

Alternately, one might think of a system as a structure of substructures
in which case the entities of the building and their relationships create
the system. This might include a metal frame system, an electrical
system, an air conditioning system and the like. The sum total of these
separate systems are called sub-systems in that they are subordinate to
the overall building. It is important to remember that each of the
sub-systems are themselves systems. The building, the system under
consideration, is a subsystem of a targer system, for instance, a city.

Models. Scientists model when the real world system is too
complex to be understood by simple observation, or when
manipulation and policy direction cannot be directed toward
the system itself, If we can observe the system and
understand what has happened, then either a specific model
is not needed or the 1ntﬁitive mental model is

sufficient. However, if the system is not able to be
understood by simple observation, then a specific and
precisely defined model might be necessary.

A model may be either a logical or physical construct of the real
world system, usually simplified to emphasize certain desired relationships
or goals.

There is one key idea concerning models. Models do not stand alone.

A model is uniquely related to some primary system. The purpose of a
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model is to give insight into or tell us something about the primary

system of concern.

Since the idea of a model is not divorced from that of a system,

we might indicate the following steps that characterize the methodology

of systems science--i.e., the modeling and simulation of primary systems:

1.

7.
8.

Identify the objectives, purposes or functions of
the system;

Identify the system structure;

Identify measures of system performance in relation to
its intended purpose;

Develop a model (Togical construct) of the system

in light of the goals or purpose of the modeler;
Develop the simulation from the model;

Compare the simulation performance with the measured
performance of the system;

Select and alter the simulation as necessary;

Determine model validity.

Simulation is what ultimately validates the modeling process.

[t is a method of converting the mode] from a logical construct

to a phenomenon which will give answers. A common way of

thinking of a simulation is that it is a computer program

(programmed from the model) that will provide numeric answers.

Thus the term computer simulation is often used. The algorithm
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for writing the computer program (simulation) is the
logical relationships expressed in the model. But it
should be noted in passing that simulations can be
accomplished without algorithms, guantitive data

and computers. The boy who builds and sails his

ship on a Take has accomplished these same objectives.
B) Systems Science Simulation

The modeling and simulation approach to problem solving seems to
follow four distinct steps. The chronological order of these steps
takes one from the generalized to the specific methodology.

1. Scientific Method - a methodology that involves the
establishment of a hypothesis and the test of its
validity. The traditional methods of testing the
hypothesis often give way to more recent methods of
simulation, when a direct test of the hypothesis is
not possible. An example would be the testing of
a hypothesis concerning any system where it is not
possible to have access to the system directly.

2. Causal Loop Diagram - The purpose of a causal loop

diagram is to show the relationship among the
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variables that constitute the model of the system.

3. Fiow diagram - the flow diagram represents the structure of
the system as defined using the specific symbols of some
problem solving methodology. It involves translating a rather
generalized causal loop diagram into a specific form.

4. Simulation - translation of the flow diagram into a set
of mathematical equations to simulate the system with the
special use of a specialized computer language. The one
we shall use in this text is called NDTRAN, meaning
Notre Dame Translater.

The first two points constitute a generalized methodology
applicable to any modeling approach. However, with the use of the
flow diagram one narrows the focus and becomes more method dependent,
but not necessarily language dependent. For instance , if one were
to adopt a form of System Dynamics * modeling and simulation; then steps
three and four would become method dependent but one could undertake
the computer simulation in any of a number of computer simulation
languages including NDTRAN, DYNAMO, DYSMAP, SIMSCRIPT, GPSS, and
even FORTRAN,

This manual will not generalize a discussion of modeling and
simulation, but will undertake to discuss the nature and uses of
a dynamic simulation interpreter called NDTRAN. Reference is made

to aspects of System Dynamics * as relevant for the discussion.

* as discussed by J.W. Forrester in his INDUSTRIAL DYNAMICS and
Dennis Meadows in his DYNAMICS OF GROWTH IN A FINITE WORLD.
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Chapter 2
Causal Loop Diagrams

A} Introduction

The purpose of the causal loop diagram is to show the relationships
between the variables selected to be used in a model. This cause and effect
relation is referred to by many modelers as influence and we shall refer to
it here in the same way. In a causal loop diagram (logically) each condition
occurs as the result of a previous condition. In short, if we are to under-
stand the behavior of the rabbit population (for example) we must understand
the causes of that behavior. Thus, we must understand why the rabbit popu-

lation behaves as it does.

B) Simple examples

Let us take an example of a man cutting wood with a chainsaw. As he
works he gets hungry. When he gets hungry he eats something. After he eats he
can again work for a while. A causal loop diagram representing the man with

the chainsaw working is shown in Figure 2.1.
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Figure 2.}
Causa! Loop Diagram

WORK

EAT HUNGRY

Notice that the causal Toop diagram indicates only two things: First,
the direction of the action involved; and second, the influence which exists.
That is, the work done causes the man to become hungry, and being hungry
causes him to eat, and so on.

Anaother example thaf is familiar to everyone since the oil embargo
is that depicted in Figure 2.2. The same circular influences occur

and no external forces are involved.
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Fiqure 2.2
Causal Loop bLiagram

/MILES OfF DRIVING\

PRICE OF GASOLINE
GASOLINE AVAILABLE

N

Referring to Figures 2.1 and 2.2 above, let us ask a couple of questions

concerning the two causal loop diagrams shown. What are the goals of each of
the systems? That is, what is the behavior that is being reflected by each
model? What assumptions are necessary in order to define the structure of the

model as depicted in the figures? Can you understand and communicate a finer

structure of the model shown in Figure 2.1 and 2.2?
C) Additional Detail

With these preliminary notions completed, let us investigate some details
of causal loop structures. To begin with,let us examine a generalized causal
loop diagram of the size of any population, reduced to its simplest elements.
These elements would be the size of the population itself, the number of births
per period and the number of deaths per period. In this way we can focus upon

the goal of the model and the specific nature of the auxiliary influences on
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the goal. The goal of the given model is to examine (predict) the behavior
of the population itself. The causal loop diagram (model) is shown in

Figure 2.3

Figure 2.3
Causal Loop Diagram

BIRTHS -+ ) POPU LATION DEATHS

KPR

We have added certain elements to the causal loop diagram in Figure 2.3
in that we are more explicit about the nature of the assumptions made
concerning the model. These assumptions are indicated by the + and -
(respectively, plus and minus signs) which show not only the direction of
the influence but also the nature. A "+" sign means a direct influence;
as births increase so does the population, and vice-versa. A "-" sign means
an inverse influence--i.e., as deaths {per period) increase, the population
will tend to decrease. An increase in the deaths per period will not per se
cause the population to decrease. However, as the deaths per period increase
(unless offset by increased births per period) the population would tend to

decrease. An odd number of minus signs in a causal loop diagram means that
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the loop itself is characterized by inverse causation. If the number of
“-" signs is even, or if there are only “+" signs, then the loop itself

is characterized by direct causation or is increasing. These ideas

are lmportant for evaluating the model behavior.

Let us look at the causal Toop diagram. The first assumption is
that the size of the population contributes to tne births per period,
indicated by the "+" sign labeled /1 / in Figure 2.3 The more births
per year the larger will be the population /2 7. The larger the
population, the more deaths there will be per period /3 7, and the more
deaths per year the greater will be a negative influence on population
/& 7. The population itself may still continue growing, for other reasons,
but the impact of the death loop itself is to decrease the population,
or to slow its rate of growth, or to cause it to decline.

The nature of the birth loop itself is that the 100p response to a
stimulus (§uch as increasing the number of births per period or an increase
in the population) will be a continued increase in the population variable.
In the death Toop any increase in the population will contribute to an
increase in the number of deaths per period, but this will tend to limit
the growth of the population. The death Toop result would (by itself) tend
to reduce the size of the population. If the birth loop were stronger
than the death Toop, then the death Toop could only tend to inhibit the

rate of growth of the population. (Be sure that you can follow the influences

and discussion suggested for the population loop.)
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D) Complex Example

1. Concept of Level and Rate

As a starting point, consider a causal Toop diagram of a population
of rabbits on a given island or plateau. The main food is either a
natural or man-grown grass or a leafy product, and the major predator
is a family of red foxes. Possible variables would then be, the rabbit
population, food per rabbit, arable land requived, rabbit density, fox
population, rabbits killed per month by the foxes. These variables are
subsumed in Figure 2.4. Rabbit births and deaths would include the

effects of food and foxes on the rabbit population.

Figure 2.4
Causal Loop Diagram

77 Tt +

RABBIT RABBIT RABBIT
BABEWS +' POPULAT I ON — DEATHS
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The diagram is very similar to that shown in Figure 2.3 except that
it identifies the specific goals of the model. The rectangular symbol
(often omitted) in the center of the diagram indicates that the basic
purpose of the model is to consider the behavior of the rabbit population.
In addition, the population is a variable which measures some quantity
or value at every and any period of time. It is (measures) the state
of the system and is called a level. This brings out an important point;
the tevel variables in any model should suggest the goals of the model.
The nature of the causal Toop diagram shown indicates that the goal of
this model is the behavior of the rabbit population (not the fox population,
or the lettuce supply, or other). Equally important to the behavior
of the model are the other variables shown. These represent rates.

These rates (in this model) represent the number of rabbits born or dying
per unit of time in the model.

The loops themselves represent feedback from the level variables to
the rate or decision variables. For instance, assuming a given fertility
rate for rabbits and given a constant percentage of female rabbits (to the
total rabbit population) the higher the population of rabbits, the more
baby rabbits will be born per period of time. The feedback relationship

(positive or negative) is shown by the sign and the arrows.
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2. Additional Complexities

The basic assumptions to the model shown in Figure 2.4 are:

1. The level of the rabbit population is critically important
to achieving the goal of the model;

2. All death influences are shown in the death rate including
fox predatation on the rabbits, rabbit demise, shortage of
rabbit food supply, and so on; and

3. A1l birth influences are shown in the birth rate including
excessive rabbit food supply, fertility rate of rabbits,
percentage of rabbit females to total rabbits and the like.

The next guestion is, what happens if the goal of the model is not
adequately served by a single level? Under what conditions might it be
necessary to model additional specific level variables excluding the
population of foxes. As yet the foxes do not constitute a problem, perhaps
because they are not yet in the area, or there is other fox food available
that is easier for the foxes to catch. In any event the attainment of
the goals of the model make it necessary to have a model containing more

than one Tevel variable. Figure 2.5 is a case in point.




This is a causal loop diagram that is a two level model, one
of the rabbit population and one of the rabbit food supply. The
obvious assumption at this point is that the naturai survival
conditions for rabbits is more complex than can be handled with
a single level variable. Specifically, there might be a critical
balance between the food supply and the rabbit population,

The assumptions of the model shown in Figure 2.5 are:

1. The level of rabbit food is critically important
in determining the level of rabbits;

2. A1l death influences are included in the death
rate;

3. A1l birth influences are shown in the birth
rate;

4. The food supply is the dominant effect in
influencing the birth rate. A1l other effects
on birth are therefore subordinate to the

food supply.

2.9
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Figure 2.5
Two level model:
Causal loop diagram
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Ledous examine Fiqure 2.5 to determine how it differs from the
Moded Skown in Figure 2,40 The goal of the model has not changed, but
ro structure of the model has changed. The structure of the model
consists of the reiationships of the variables within the model. The
malor difference batwean the two models is the manner in which the
birtns per poriod are controlled.  In short the set of influences
that control the nunber of rabbits born per period has changed, and
therefore the ctruciure of the model has changed. At this pﬁint
we have established the causal loop diagram for a two level rabbit model,
where the rabbit populaticn and the rabbit food supply are the c¢critical
Tevel variables. But further structural change is required since foxes
represent a critical concern in the problem statement. With the addition
of fuxes we at Teast have the minimum requirements for a complete
medel which satisfies the goal.

The modeling of the foxes can be thought to be similar to that of
Lire rabbits except For some influences. Thus we will create a sub-system
for the foxes similar to that for the rabbits, which therefore will create

4 iarger closed Toop nodel including a sub-model for rabbits and a sub-model

for toxes as shown in Figure 2.6
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The left side of Figure 2.6 is the same as that shown'for Figure 2.5.
In this instance the level of the rabbit food supply is seen as having
a critical influence on the number of births per unit of time of the
rabbits. The fox population is seen as a separate sub-model.

There are two contacts between the separate sub-models.

First, the rabbit population constitutes a primary food for the
foxes. Therefore the Tevel of the rabbit population is an input to
the births per period (birth rate) of the foxes. The relationship is
positive, in that the larger the rabbit population, the larger is
the food supply of the foxes, the larger is the fox birth rate. The
model ctearly assumes that the food supply of the foxes is the most
important element of the fox birth rate. A1l other influences on the
birth rate of the foxes either comes from the size of the fox population
Ttself, or is assumed in the growth constant of the birth rate.

Some of the other elements that influence the birth rate of either
foxes or rabbits, other than these noted, would be the percentage of
the population that was female, the fertility rate and related phenomena

The second contact point involves the size of the fox population
which will have a direct influence on the death rate of the rabbits.
The larger the fox population, the larger will be the number of deaths
per period for the rabbits. Other factors that might influence the number
of deaths of the rabbit population besides the population itself, would be
such things as abnormal conditions not included in the food supply. the

Fox population, etc. The last causal loop diagram, Figqure 2.6, shows
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immediately that the structure of the model has changed. The important
coint to note from a structural point of view is that the influences

er the death and birth rates have charged. The modeling is accomplished
vy centrolling {modelling) the rates. Thus the structure of the model
is identified by specifically ascertaining tHe way in which the rates

are controlled.
E) Summary

A causal loop diagram has two major parts:

1). variables - the rates and levels for the model;
2). links or flows -- directiona) polarized lines which
indicate the general relationships between

variables of the model.

Causal Toop diagrams also help to establish the structure of a model

and determine what the goals are and how they are to be achieved.
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Chapter 3
Flow Diagrams and NDTRAN

Now we wish to introduce the reader to the System Dynamics Flow
Diagram and the continuous systems computer interpreter :NDTRAN. Remember
that System Dynamics programs represent models of continuous time,

dynamic systems and, under special conditions, discrete time systems,
A) Flow Diagrams

In the previous chapter, a simple rabbit population model was shown
in causal loop diagram form. A single level variable for the rabbit
population and two rate or decision variables ; the birth rate (rabbits
born per period) and the death rate (rabbits dying per pericd). The causal
Toop diagram is shown as Figure 3.1

Figure 3.1
Causal Loop Diagram: Rabbit Population

RABBIF RABBIT RABBIT "
BIRTHS + POPULAT1ON ("'; DEATHS
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Since System Dynamics Simulation methodology is a type of problem
solving methodology, perhaps not the easiest but the best way to explain
the nature of System Dynamics Simulation Language is to do so in the
context of simple, but specific problems. The approach will be as
follows:

1) The Causal Loop Diagram will be translated
into a System Uynamics Flow Diagram;

2) The System Dynamics Flow Diagram will be
transiated into a computer modei;

3) Each computer language statement will be explained;

4) the manner in which the program is executed will be
explained.

The purpose of the causal loop diagram is to indicate the basic
Structure of the problem and the basic influences that cause the
mode] to behave as it is hypothesized. The Flow Diagram translates
these basic ideas into the “flows" structure of System Dynamics
modeling, establishes the specific boundaries, and indicates the nature
of the feedback in the model. Figure 3.2 is the Flow Diagram counterpart
of the Causal Loop Diagram shown in Figure 3.1 It is necessary to remember
that the basic System Dynamics Modeling approach is that of conserved
tlows. By this we mean that materials or things cannot be created or
destroyed but simply moved from one place to another. The conserved flow
approach considers that the source is an infinite population of whatever flows

into the level. The magnitude of the flows into the level is controlled by the
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policy decision (valve symbol) between the source and the level. Thus,
rabbits are the only conserved flow in Figure 3.2. Any other flows in
a system are unconserved and relate to information. These in and of

themselves cannot control the level of any material or any things in

the system.
Figure 3.2
Flow Diagram:
Rabbit Population
LEVEL NS
QURCE Rabbits
m : '
[+7] [
5 - R
-
f’_ - == \_9 ?"q

- o Flows of people, materials or services

e e ———— —_—— Information flows: basis for feedback

RATEB Rabbits born per period

RATED Rabbits died per period

——  CONSTANT: a value that converts the size of a population
to the rate at which it would accomulate over time.
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B) Time Data and Subscripting

Systems modeled with Systems Dynamics are always time dependent
systems. Thus, the time frame of the system is always shown on the
horizontal axis or the abscissa of a graph and the value of one or more
system variables is shown on the vertical axis or the ordinate. The
period of the model is referred to as the number of iterations in the
computer run. Therefore a run period for a simulation is defined as the
difference between the time the run ends (STOP) and the time that it
begins (START). The length of time between the two is divided into
equal time intervals. Fach time interval or time segment is called a
“solution interval" and is more commmonly referred to as DT. The
continous advance of time is thus divided into small intervals of equal

length, each of which is one DT (Figure 3.3). By definition, this interval
DT must be short enough so that we may assume that constant rates of flow
over the interval are a satisfactory approximation to the continously
varying rates in the real system /Forrester, J.W., INDUSTRIAL DYNAMICS,
pp. 73-74/. A solution interval or DT must be less than the time constant
of the individual system. Normally, if one is dealing with a model that has
a number of different time constants, then the DT or solution interval
should be Tess than the smallest time constant. A good initial rule of

thumb 1s that the DT period should be Tess than one-half of the smallest

time constant of the system. Figure 3.3 suggests the framework for under-

standing the nature of the method of execution of the progfam over time.
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Figure 3,3
Systems Dynamics Program
Execution

Variabﬁe
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Shown is the time scale from 1940-1950 with DT=1 year. Thus the
period of the simulation is 10 years divided into 10 equal parts of
1 year each.

For convenience of calculations by the programmer, a specific user
convention has been adopted for the subscripting of variables. There are
two types of variables that this specifically applies to: rate variables
subscripted as RATE.JK or RATE.KL and tevel variables subscripted as
LEVEL.K . In Figure 3.3 the similation is considered to begin in the
year 1940. Thus any value for a variable as of the start of the run

(1940} would be the initial value of the variable for the year 1940. The

program would either assign or compute an initial value for a variable at
the start of a run. The simulation would begin with this assignment of an
initial value to the first time point in the run.

System Dynamics defines the subscripts used as follows:

J = immediate past time instant
K = present time instant
L = immediate future time instant

A1l calculations are done at time instant K or for time period
KtolL (KL} . Once every variable has been accounted for, a shift of the
subscripts occurs, as from the first iteration to the second iteration
in Figure 3.3 This process is carried out until all intervals have been

accounted for.




3.7

C) Symbol Definitions

While giving an explanation for each symbol in Figure 3.2, we will
atso try to explain the algorithmic implementation in NDTRAN.

1.__Source and Sink

The cloud formation represents either a
source or a sink for some specific accumulation.
The best way to define the source or the sink is
that it is analogous to a statistically infinite

population that, no matter how much is drawn out of it or put into it, there
is no impact on the scope or nature of the source or sink. The source or
sink has no effect on the overall model, per se.

A Source (or Sink) is always immediately related to a level variable.

2. Level

The System Dynamic symbol for a level is: > ->

DEFINITION: A level variable is a time varying quantity whose
present value is dependent on its past value plus
(or minus) any changes that affect the variable
in the immediate past.
INTERPRETATION: The number of rabbits in existence today equals
the number of rabbits living as of the end of
yesterday (J) plus the number born during the

time interval (JK).
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The time periods are subscripted as
before. The subscript combination JK refers
to the time passage between yesterday and
today, that is between the last discrete
time instant and the present discrete
time instant. The subscript combination KL
refers to the time passage between today
and tomorrow, that is between the present
discrete time instant and the next immediate
discrete time instant.
The level variable in a Syster Dynamics model indicates
that the process of accumulation or integration is taking place. The new value of
the level is obtained by adding to or by subtracting from the previous
value, the changes that have occurred during the period. The net change
in a level is the rate of accumulation over the past period less the
rate of Toss (gain) from the level. There is a more detailed discussion of this
in the chapter dealing with integration methods in NDTRAN. The important
thing to remember in the System Dynamics simulation methodology is that
in a flow diagram, every time that a leve] symbol is seen, it means that the

integration or accumulation process is required, or that a level equation is
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required at that point in the computer model. There are a couple

of different ways of illustrating a level equation in a flow diagram,
but the shape is always the same. A variable name may appear in the
upper Teft hand corner which would identify that Tevel in the computer
program. A name may appear in the middle of the level symbol which
provides the vernacular definition for the variable.

For ease of communicating the model to others, for technical
correctness and for ease of cross-reference by the programmer or modeler,
it is always a good idea to use the symbols correctly in a System
Bynamics Flow Diagram.This simplifies the translation of the model to the

computer program.

3. Rates

Now, by convention (as well as logically) a System Dynamics level
variable cannot change itself. 1In the rabbit model it takes spontaneous
agreement between a male and a female rabbit before that process can occur.
Rabbits, Tike Queen Victoria, did not spring fully clothed from the head
of a large cabbage. This agreement shall be called a policy decision or
a rate decision or simply a rate.

We have noted before that a critica) area of modeling in System
Dynamics is the necessity to identify and to model the rate (policy
decision) equations. In the model shown in Figure 3.2, there are two

rates that control the accumulations in the level variable; the birth
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rate and the death rate. The rate symbol is defined as fb]Tows:

DEFINITION:

INTERPRETATION:

>

A rate may be regarded as a policy decision

that will affect a level equation over time.
Rates are the amount of change per period that

a level will undergo as a result of the action
of a specific rate shown. Rates arerelated to the
derivatives of the levels they effect. A rate(s)
as a policy decision, will increase or decrease
a level.

The rate at which rabbits will be born (or die)
is determined by the number of rabbits, times
the fertility of the rabbits. The concept
includes the idea that not all rabbits are

female (or male) rabbits.

As seen in Figure 3.2 the two System Dynamics concepts needed to define

a rate were:

1) a level variable;
2} a constant, that converted the size of the
population to a rate at which that size population

would accumulate over time.

These are, however, not necessary to define a rate in all cases.
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Because rates are a measure of the change of a level variable, they are
calculated over an interval DT. Thus we find in System Dynamics
programs,rates are always defined with reference to a time period such as
RATE.JK or RATE.KL. This represents the magnitude of the rate { number
or rabbits born or died) during the time interval JK or KL. Rates are
constant during an interval but change from interval to interval. In
Figure 3.4 (similar to Figure 3.3) the relationship of rates to levels
is shown.

Let us remember, again, that a level variable is a time-varying

quantity whose present valye K is dependent on its

immediate past value J, plus or minus any change in the

variable from J to K.
In short, a Tevel variable at any time K can differ from the Tevel
variable at any time J , only if there has been some decision to change
the level or quantity of the variable between J and K

In Figure 3.4, the circle representing the level variable (and
identified as L1) represents the initial value of the variable at the
start of the simulation run, at time instant 0 (zero). If there were
no changes in the initial value of the variable between J and K
{(instants 0 and 1), the value of the variable (L1) in the immediate
past instant J would be the same as the value of the variable (L2) in
the present instant K. For illustrative purposes in Figure 3.4 we
are assuming that only one rate affects the level, and between J and K
for the iteration, the value of the rate variable is zero indicating

that L2 will equal LI.
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If there were some positive increment to the variable, then
the value of the variable at instant K would not be the same as the
value of the variable at instant J. For instance, for the second
iteration, the rate is positive (above zero), hence the value of
the variable at the third discrete time instant {L3) is not the
same as the value at the second discrete time instant {L2).

The idea is that the basic elements to the level variable are
the initial value and the rate at which the variable will change over
time. The given value of a level variable could be defined as an
initial value plus the successive increments (or decrements) ‘to that
initial value over time. The intuitive logic of the procedure would
be as follows:

1. An initial value is determined for each level variable

for the beginning of each simulation run;

2. A rate of change between the immediate past instant J and

the present instant K 1is found:

3. This determines the value of the level variable at the

period K;
4. The rate of change ( A LEVEL.KL) between the present
instant K and the immediate future instant L is then computed
for use in the next iteration sequence.
As of this point the modeler would have determined the value of the
level variable as of (some) instant X and the rate of change over the
second DT. At this point the program would automatically shift the

subscripting, and it would appear as shown in the second interation, Figure 3.4
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At the end of the first iteration:
a) value of level variable at instant K is known;
b) rate of change over instant KL is calculated:
THE SUBSCRIPTS SHIFT FROM THE FIRST TO THE SECOND ITERATION:
At the beginning of the second iteration:
a) Tevel variable value at instant K from the first
iteration becomes the value of instant J for the
second iteration.
b) rate variable KL from the first iteration becomes
rate variable JK in the second iteration.
¢) value of the level variable at the end of the second
DT is calculated;
d} projected change in the level variable for interval KL
of the second iteration is calculated:
THE SUBSCRIPTS SHIFT FROM THE SECOND ITERATION TO THE THIRD ITERATION.
In this way the entire simulation over n intervals is carried out
by referring only to three successive time instants for each iteration,the immediate
past ( J }, the present ( K ), and the immediate future { L ).
A1l that is needed to calculate the values of a level variable

over time are the initial value for that level variable and the summation

of the successive rates of change. This process is normally called
integration. *
The series of points in Figure 3.4 identified as L1 and L2

would suggest a level variable that is static or unchanging. The series

* This also suggests the simplest form of integration, rectangular integration,
and values between defined points can be directly interpclated. A more complete
discussion of this is given in Chapter 6.
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of points in Figure 3.4 indicated by L3 and L4 would suggest a level
variable that is being affected by a positive rate of change and Tikewise
the point L5 suggests a level variable that is being affected by a
negative rate of change. *

Because rates are a measure of the change of a level, they are
calculated over an interval DT. Thus we find symbols such as RATE.JK
or RATE.KL. These represent the number of units that some level
variable will change over theinterval JK or the interval KL Rates
are constant during any one interval, but change from one interval to
the next as seen in Figure 3.4. In order for the algorithms to
function properly, it is necessary that the rates change only a small
percentage from one interval (DT) to another. The rate is discontinuous
from interval to interval. A discontinuous positive and negative rate

sequence in shown in Figure 3.4

* Thus we obtain continuous values for the level variable as shown
by the dotted line in Figure 3.4.







Chapter 4
NDTRAN
Language Definitions

A) Card Format

The NDTRAN Interpreter is designed as a batch oriented com-
puter 1anguage.* The input to the Interpreter is a set of computer
éards containing a System Simulation Program. Conceptually each
card containing a statement of a program is divided into three parts:

Part 1: Key field identification code;

Part II: Program Statement; All variable names are limited
to 6 alphanumeric characters in length.

Part IIl: Comment or document statement or definition of
the statement.

To refresh your memory, Figure 4.1 is a reproduction of a cemputer

card. No Source Statement may extend beyond Column 72 in NDTRAN,

The only absolutely set field on the card is the field beginning
in Column 1. The card itself is divided into 80 columns indicated by
the small numbers between the 0 and the 1 row, and the small
numbers beneath the 9 row. The bottom of the card is the one with
the numbers 9 printed across. This is sometimes called the "9-edge"
of the card. The top of the card is called the "12-edge". The face
of the card contains the printed numbers, the back of the card is

clear.

* The NDTRAN interpreter also works on interactive systems.

4.1




4.2

Figure 4.1
Computer Card

GFJPuU"HQGDODOGDUGU goooo BD i98 0 60009 00000

ETT AN HRBHL 14 0 LYY T YT
Ilil.l! SESRRERERY 1111 II (B AEERRRERNAR!

223222?222222222222?22222222222222222222222222 drrrerarLLyize e
T3y 333333333333343333333332353333333353233233233233333332233353333
PTG 4 0408448 4444 80 a a0 aaa 0 asadaaddaaadndnty
S iR i IE S5 5555555555555555555558555558555855¢
G605 E B oo Lo h6608006666€00060660666 36667 G66666G6666566C6665c666666G6b66E66¢
R R RN R R SR R R R N R R R R R R R R N R AR R R R R R R RN AR
J25&888BSaﬂﬁ388388ﬂﬁaﬂﬂS388&33EﬁﬂsﬂEﬂﬂBBEHB3888803883338888388588BBBGEHH

93“” 2938328905904 “99“‘“"933"93““39999999995'999999“9999999999993999JQ
::srf;r PRE RN RN BN RN NN OS T CNN I IIA ST L ROHBRIRRT T

— ke

i

00
#n
H

-_— e
—::'.o
— s
-—

0!
l

-_— R D
—_—
—
— e

X
2%
11

—_—
— D
—— e
— e

00
00
[

-_— 8
— o
=
_ntg
—

6 000
& W WYY
| llll

—-‘1:3
—g:
bt ]
— s

The left most column is the first column, or Column 1. For
an NDTRAN program, one always enters the type of program statement
on the card in Column 1, or beginning in Column 1. Figure 4.2 con-
tains a list of the types of Statements that are usable, and the
symbol that is entered beginning in Column 1 of the card to represent
that statement.

In all instances the key field symbol will begin in Column 1 of
the program statement card, and in all instances, a blank space
tollowing the key symbol marks the end of the key symbol jtself.

The key symbol is used by all programs to identify the type of

statement, hence it is a critical part of the program statement.
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Figure 4.2
NDTRAN STATEMENTS
STATEMENT TYPE KEY SYMBOL

1. Level equation L

2. Rate equation R

3. Constant equation ¢

4. Initial Value equation N

5. Auxiliary equation A

6. Program specification statement PARM or SPEC ( p. 4.34)
7. Supplementary equation S

8. Continuation statement X

9. Note statement NOTE
10. Table statement T

11. EXPND statement and MACRO procedures EXPND

12. Print statement PRINT
13. PLOT statements PLOT
14. RERUN statement RERUN
15. Definition statement DEF

In the table shown in Figure 4.2, some of the key field symbols
are more than one character in length. Al1 begin in Column 1 and all

are separated from what follows by a blank space. Blank spaces _are

separators or delimiters that separate fields of information.

Following the key field and the first blank on the program card
is the program statement itself. The program statement will be an
equation of the type described by statement type in Figure 4.2. The

entire statement must be written without blanks appearing anywhere

within the statement itself. Following the statement is another blank

space.
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Following this, the remainder of the card may be left blank or one
nay enter a definition of the statement-comment-for future reference.

Let us take a sample program statement and i]]usfrate the form
that all program statements must take. A Constant statement is
identified by a C in Column 1. The purpose of a constant statement
is to assign a numeric constant to a variable name. A variable name
may be any group of alphanumeric characters, beginning with an
alphabetic character that is 6 characters or less in length. There
are two ways of entering a numeric constant into a variable name:
First, simply use the actual constant; Second, enter the constant in
scientific notation form. The ways are illustrated below:

COLUMN 1

1) € VAR1=56

2) € COMMON=5E+10

3) C NCIERC=15E3

4) C WAGE21=1.44 SET WAGE TO 1.44 AS INDEX (1950 vaLue)?
1 2 3 (Fields)

Field 1 - the key field

Field 2 - the program statement

Field 3 - the definition of the statement. This is a non-
operating part of the program card, and the form
of this part (following the second blank on the
card) is not important. The definition is important
as it is used as the necessary fnput to the
DOCUMENTER option of the program.

*Note: 1. The three fields are separated by blanks.

2. Field 2 allows no spaces or blanks.
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In NDTRAN version 1, a variable may be any group of
alphanumeric characters , beginning with an alphabetic

character that is 8 (EIGHT) characters or fewer.

L S i

This form of the program statement is invariant for each type
of program statement. For instance, a PLOT card, which is one that

controls printed output from the NDTRAN language is as follows:

column 1

PLOT WAGE,INV,DEPR,AGRIC

] 2 (fields)

Notice that the program statements begin in column 1, with the key
field symbol. Following the key symbol is a space. Following the
space are the names of the variables, separated by commas or slashes,
which the programmer wishes to plot. Field 1 constitutes the key

field symbol and field 2 constitutes the program statement.
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There are a total of 12 program control options and 15 statement
types in the NDTRAN interpreter. It is the purpose of this chapter to
define each control option and each equation type and to show the syntax

requirements for that equation type as well as to illustrate its use.

NDTRAN version 1 contains 10 control options and

14 statement types. The DOCUMENTATION control option
and the CHECK control options are not available on
version 1. The DEF statement used by the DOCUMENTATION

option is not available.

Control Statements

Control statements always contain an * in the key field
except for the TITLE statement from in version 2. There are a total
of 12 types of control option. The TITLE card usually but not necessarily
comes first, with the other option cards in any order. All option statements
must come prior to NDTRAN equation statements. The control options are:

- TITLE statement for program;
Cross reference table option;
. Diagnostic warning option;

- Documentation option;
Integration method option;

. Object code option;

Output option;

. Source list option;

. Statistics option;

10. Symbol table option;

11. GO or NOGO option:

12. Check option.

-
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It is not necessary to put in ail nine control cards or controi
statements in order to obtain all of the options in NDTRAN. For

instance if a programmer put in none of the control cards, the following

default options would be provided with the compilation and execution
01 the program:
1. no title would be provided on the program listing and output;

2. no cross-reference table would be provided;

3. diagnostic warning messages would be provided;

4. no program documentation would occur;

5. The Adams-Bashforth integration method would be used (see Chapter 6);*
6. no object code Tisting would be printed out; '

7. wide output would be provided on plots, prints, and other
printed options;

8. the source program would be listed;

W

the program statistics (summary) would be printed;
10. no symbol table would be printed.

11. the program GO option would be in effect and the
program would execute.

12. no checks are made during execution so that overflows or
underflows are handled by the FORTRAN operating system in
use rather than by the special built-in checks for such
occurences.

Please note that in the title card, the word TITLE appears and
then one blank space before the actual title begins. In all other
control cards the * appears and one blank space before the option
control word.

It is important to note that if a syntax error is made in a control
card, NDTRAN will ignore that card. Any subsequent control cafds will

be processed.

* For NDTRANZ the default integration method is set at the time of
installation of NDTRAN2 on your computer.
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IN THE FOLLOWING SECTIONS, THE MAIN DESCRIPTION IS FOR NDTRAN

VERSION 2, WHILE THE DESCRIPTION INSIDE THE RECTANGLE AREA IS THE

DESCRIPTION FOR NDTRAN VERSION 1. In most instances the description

nf the operations are identical. Where they are different, the
description for NDTRAN version 1 is also included inside the block

aited.

It is important to note that in NDTRAN Version 1, if a syntax
error is made in a control card, NDTRAN will assume that there are
no more control cards. Any subsequent control cards will be assumed
to be note cards and the default options will be in effect, as noted

in Figure 4.3.1

In NDTRAN Version 2 Variables may be only 6 alphanumeric characters

in length,

In NDTRAN Version 1 Variables may be 8 alphanumeric characters in

length.
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1. TITLE STATEMENT
The title statement provides a title for each page of the out-
put of the computer run. It would normally be the first of the contro]
cards encountered. It takes the following form:
(- - Column 1

b
TITLE PRELIMINARY MODEL OF WAGE SECTOR

* PRELIMINARY MODEL OF WAGE SECTOR

The title card simply is an indication to the programmer of the
problem being programmed. It will appear at the top of each page of

the computer run. The default is no title since it is undefined.

2. CROSS REFERENCE LISTING
In NDTRAN, the programmer has the option of obtaining a cross

reference listing with each run of the program. This is probably the
most important control function available for the programmer who desires
aid in de-bugging a program. The method of obtaining a cross-reference
listing is to use the contro} card:

;-n- —-- -Column 1

* XREF

*XREF

The cross reference listing shows a non-repetitive list of all of the
variable names used in the program in the left-most column. The next
column is the definition column. NDTRAN provides its own line number
for every program statement in the program, Each program begins with tine

number 1. The definition column of the cross reference table shows
_tr_m_—
Each program in NDTRAN Version 1 begins with 1ine number 10001.
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the number of the statement in the program where each variable is
defined -~ that is where each variable appears on the left side of

an = sign. The third column of the cross reference 1isting shows
alt of the other statements in the program where the defined variable
dpoars (to the richt of an = sign). The default condition will

“4.ide a printout of the cross-reference table.

3. DIAGNOSTIC WARNING OPTION

When writing a program in NDTRAN, the Interpreter will accept
only syntactically correct program statements. The syntax error
messages are listed in Appendix A for NDTRAN Version 2 and in Appendix
B for NDTRAN Version 1. The default condition allows all of the
syntax messages to be printed out. If the warning syntax messages
are not desired,.then beginning in column 1, the following control card
would be used:

F—-“-"Co1umn 1

* NOWARN ( eliminates only type 3 messages on p. 4.11)

*NOWARN ( eliminates only type 3 messages on p. 4.11)

There are two types of error messages in the NDTRAN Interpreter.
The first is the syntax error message and the second is the execution-

. . .+
time error message. Only syntax errors are included in this option.
A syntax error message is where the simulation program has an

error in the form of the statement of one of the statements of the pro-

gram. The error is flagged with a § sign and the number of an

tThe execution-time errors will be discussed in Chapter 6.
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error message is printed out. NDTRAN recognizes three types of syntax

errors:

1) critical _errors that will inhibit the execution

of the program.

2) errors that will normally not inhibit the execution
of the program but might give incorrect
results. The assumption here is that one
might want to see the program, output
even if there might be an error in the
program.

3) warnings that will not inhibit the execution of the
program and will probably permit correct
results. This constitutes syntax errors
that the interpreter NDTRAN tries to correct.

Each of the three types of syntax errors {s identified by the NDTRAN

interpreter when the warning option is in effect.

4. DOCUMENTATION OPTION

NDTRAN permits the programmer to define each of the critical vari-
ables in the program. These definitions are normally placed in field
3 of the statement as defined on page 4.4, Alternatively the definitions
may be placed in DEF statements at the end of the program, or immediately
following each appropriate statement. The documentation of the output
program is automatic with the DOCUMENTATION control card.

* DOC

' Documentation uf a program is not available in NDTRAN Version 1.




5. INTEGRATION METHOD OPTION

As noted fully in Chapter 6 NDTRAN provides three different
methods for carrying out numerical integrations on the computer:
tuler Lower sum, Runge-Kutta and Adams-Bashforth. If the control
card is omitted, the default integration method is as set by the
systems programmer when NDTRAN is implemented on your own computing
svstem, The default may be set to either of the three options noted

al that time. The control card appears as:

Column 1
!

* EULER
* RKINT
* ABINY

*EULER
*RKINT
*ABINY

The default integration method in NDTRAN version 1
is the Adams-Bashforth method.

6. OBJECT CODE OQPTION

NDTRAN generates its own pseudo-object-code from the source pro-
gram input. The object code is then executed by NDTRAN in providing
the desired print and plot output. This object code is generally not
useful to most simulation programmers. The default condition causes
the object code printout to be omitted. The object code printout

may be obtained by:
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* 0BY

*0BJ ]

ITPUT SE7E OPTION

NOTRAN provides two widths for all printed or plotted output.
The first is the standard computer paper width, with the NDTRAN plot
w2 width of 121 characters. The narrow plot option is for those de-
5iring output on a communications terminal of some sort or who other-
wise desire an output width of 72 characters. The default option is

the standard wide plot. To obtain the narrow plot enter as a control

card:

; Column 1
b
* NARRGw

*NARROW ,

The narrow option printing provides printed and plotted output on
standard typewriter paper size. When using the NARROW option the symbol
table is difficult to read (as it is not controlled by the NARROW
option), but the cross-reference is usable. When using the WIDE option
the word TITLE plus the title itself may take up all 72 characters

on the 1nput statement. When using the NARROW option the word TITLE

plus the title itself must take up a maximum of 54 characters.

R

When Using NDTRAN Version 1, the maximum title length in
characters and NOTE definitions preceeding PRINT AND PLOT

statements is 48 characters.
[




8. STATISTICS OPTION

NDTRAN makes certain calculations when a program is compiling
and it prints out this summary just before program execution begins.
Should the user desire to suppress the statistical output infarmation,
the following control card should be entered beginning in Column 1
¢t some point with the other control cards and before the program

itself begins:

I Column 1

* NOSTATS

*NOSTATS

The standard default condition in the absence of the NOSTATS control

card is that the statistical information will be printed out.

9. SOURCE LISTING

The SOURCE LISTING control card simply provides a listing of the
source program. The default condition of NDTRAN in the absence of a
control card is that the source listing will be provided. In order to
ensure that the source program will not be Tisted, enter the following

control card on column 1:

'

* NOSOURCE

Column 1

*NOSOURCE
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10. SYMBOL TABLE LISTING

In NDTRAN one of the options is to show a listing of the variable
names in the program, and to indicate the type of variable. In this
instance a variable is thought of as a SYMBOL. Therefore, a Symboi
table Tisting is a 1ist of all of the varfable names used in the program
with an indication of the type of variable that it is and the type of
output desired for that variable (symbol).

The leftmost column shows the name of the variable in the program.
The second column shows the type of variabie. The third column shows
the type of output requested for the variable. The fourth column is
the internal program number for the variable. The fifth column is
the function number for each function used in the program. The right-
most column indjcates the number of elements in each table function
and the core Tocativn of the beginning table number for each table. To

ovlain the Symbol Table listing enter:

Column 1

* SYMBOL

*SYMBOL

11. GO AND NOGO OPTION

The standard default for the NDTRAN Interpreter is that execution
will be attempted following compilation. In some instances, the pro-
grammer might wish to obtain some of the control card output options

without executing the program. In this instance the control card would

be entered as follows:




i; Column 1
* NOGO
*HNOGO
TThuctretion of Control Statement Options

Perhaps the easiest way to explain many of the points noted above
regarding the control card options is to execute a program containing
the indicated options and errors. In the following section the reader
should note that there are certain syntax differences between NDTRAN
Version 1 and Version 2.

1. Example 1,

Ihe rabbit model shown in Figure 3.2 was translated into the source

program shown in Figure 4.3 before being prepared for key punching

on cards.

Figure 4.3
Rabbit Population
Syntax Errors

TITLE ERROR OPTIONS

EULER

XREF

NARROW

SYMBOL
RAB.K=INTGRL{RB.JK-RX.JK)
RABI=150

RB.KL=RAB.K*FERT

RD.KL=RAB, K*DEAT

FERT=.06

DEAT=.04

PARM DT=.08

PARM START=0

PARM S5TOP=100

PARM PLTPER=10

PARM prtper=10

NOTE RABBIT MODEL PRINTED DATA
PRINT RAB,RB,RD

NOTE RABBIT MODEL PLOTTED DATA
PLOT RAB,RB,RD

DV > % % ¥

4.16
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There are five syntax errors in this program shown as listed by
the computer. Figure 4.3 shows the program as it was typed before
being submitted to the NDTRAN interpreter for computer execution.
Figure 4.4.indicates how NDTRAN handlied the errors noted. The discussion
of the errors below refers to Figure 4.3. You may wish to compare the
discussion below with the way that NDTRAN handled the errors. The syntax
errors in Figure 4.3 are:
a) a keypunch error was made on line 5 of the program on
a control card where an X was punched instead of a *
NDTRAN would regard this as an attempt to continue the
previous line, which may not be done on control cards.
b) 1ine 6 of the program has two errors:
1) the first refers to variable RX. A keypunch

error was made and the RX should have been RD,
(see line 9). This is a CRITICAL error,

2) The second error is that the level variable RAB
was not initialized. This is a CRITICAL error.

c) On line 7 the variable RABI was entered and not used. This
would result in a WARNING error only.

d) The error on line 9 is similar to that on line 7, in that
it indicates that variable RD was not used in the program.
THE WARNING MESSAGE IN NDTRAN2 CAN BE A POWERFUL DIAGNOSTIC
HELP.
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C FERT=,06

C DEAT=.04

FARM DT=.08

PARM START=0

PARM STOP=100

FARM PLTPER=10

FARM PRTPER=10

NOTE RABBIT MOLEL PRINTED DATA
FRINT RABsREyRD

NOTE RABBIT MODEL PLOTTED DATA
PLOT RABsRBsRD

ERROR OFTIONS

STATS AND OFTIONS

19 SOURCE STATEMENTS

2 DIAGNOSTIC MESSAGES

2 WARNINGS
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2 CRITICALS
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In summary, NDTRAN provides a WARNING fiag to all variables not
used in the program, whatever the reason. The ERROR condition is
because of an incorrect entry in a control card field, causing NDTRAN
to ignore that control card statement. The CRITICAL ERROR occurs because
of improper entry of variable names which cannot be recovered from for
correct execution. The same program for Version 1 appears as Figure 4.3.1

along with the computer output in Figure 4.4.1.

Figure 4.3 .1
Rabbit Population
Syntax Errors

REES TS Y23 Sl R LR L I ST IMNG KARKA KKK

12001 X ERRUR D TLONS

12002  KXREF

10003 XSYMBUL ’
10004  XEULER

L0005  XURJ

100064  XNARKOW

10007 L RAR.K=INTEGRAL (RE.JK-KX..JK)

10008 C RARI=150

10009 R RE.KL=RAR.KXFERT

L0010 K RD.RL=HAB.KKDEAT

10011 © FERT=.0&sDEAT=,04

10012 SPEC OT=,08:START=UsSTOP=100,rRI1FER=10
LOO1LE  NOTE RARBIT DATNA

L0014 PRINT BIGEEsRAR

-
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Figure 4.4.1

There are three syntax errors in the program, The first

has to do with the syntax of control card statements. This error

in line 10003 concerns the statement XSYMBOL. The correct form
would be *SYMBOL. NDTRAN, once it encounters a syntactically

incorrect control card will assume that there are no more control

cards and default options will be in effect,

There are two additional syntax errors. No initial value was

provided for the level variabie RAB, thus generating an error in
Tine 10007. The second, error in line 10007 was the misspelling

of Variable RD as variabie RX.

In NDTRAN Version 1, the source program and the error conditions

appear separately as shown below:

Rabbit Population:
Syntax Errors:
DIAGNOSTIC MESSAGES OPTION

HXKEARKKAOE K PIAGNOSTIECE MESSaAaGES KKK
10003  XS5YMBOL
Q) X¥kkxx C KR I T I C AL Xkkkx - NOOLOO
10007 L RABJK=INTEGRAL(RE. JK-KX.JK)
$ $ - e
1) kkkkx C K I T I C AL XKKKX Np0i24
2 xkxkx C R I T IC AL XOEKX NOOS1 4

k¥

THE WARNING SYNTAX ERRORS DO NOT SERVE THE SAME FUNCTION IN
NDTRAN VERSION 1, HENCE THEY DO NOT APPEAR IN THIS PROGRAM OUTPUT.
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From the Version 2 Diagnostic Error messages shown in Appendix A 1

we find for this program.

Error Number: Error Message:

101 The previous card may not be continued. This
continuation card will not be processed.

516 No equation exists for this variable. It is
therefore undefined.

524 This level variable must be given an initial
value,

587 This variable is used for output. It should

have been defined as a supplementary.

588 This variable is not used for output and has
no affect on any other variable.

T S e W e e g - e e

From the Version 1 Diagnostic Error messages shawn in Appendix B,
we find the errors generated by the program of Figure 4.4,1. They are
not identical in number or content.

Error Number: Error Message:
100 The card type indicator which begins in
column one is not recognized by NDTRAN.
That card will not be processed.

516 No equation exists for this variable; it
is therefore undefined.

524 This level varijable must be given an
initial value.

R A A s A L 8 4«

T e o Y AU, 1 L -

2. Examgle 2.

Figure 4.5 is the statistics option output for NDTRAN (see Figure
4.3 & 4.4) and it is labeled appropriately. Starting at the top of the
statistics and options section, we noted that there were 15 source

statements in the program with 5 diagnostic messages.
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Figure 4.5
Statistics and Options

FAGE 2 ERROR OFTIONS (C) 1978 UND
L I B ¢ STATS AND OFP T IONS L S B ¢
19 SOURCE STATEMENTS
9 DRIAGNOSTIC MESSAGES

2 WARNINGS
1 ERROR
2 CRITICALS
CARD TYFE OCCURANCE
« 3
FARM 9
L 1
R 2
X 1
x 3
NOTE 2
FRINT i
PLOT - 1
TITLE 1
OFTIONS IN EFFECT!
NOCHECK NOSYSTEM NODOCUMENT NARROW
STATS NOGO NOSYMBOL XREF
WARN NOOBJECT SOURCE NOTIME

INTEGRATION METHODS
EULER LOWER SuM
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The last part of the Figure 4.5 indicates that the following options

were operative:
The NOCHECK execution option was in effect, no SYSTEM
information would be made available, the program would not
be DOCUMENTED, the NARROW output ‘PRINT and PLOT option was
in effect, STATISTICS and OPTIONS would be printed, the
program would not execute (NOGO) because of the critical
errors in the program, no SYMBOL table would be printed, no
CROSS-REFERENCE 1isting would be printed, DIAGNOSTIC warnings
would be printed, no OBJECT code listing would be operative,
the SOURCE program would be listed, no TIME estimate would
be given and finally, the Euler Lower Sum integration option
was in effect.

3. Example 3.

The CROSS-REFERENCE table option is illustrated in Figure 4.6.
The first column shows the variable names in the program, The second
column shows the 1ine number where they were defined. The third column
(with extensions) shows the places in the program where each variable
s used (Right side of = sign). Remember, in an NDTRAN program, the
variable may be used before it is defined, as NDTRAN does its own sort
of the program statements prior to compilation of the program. Figure 4.6
shows the model of Figure 4.3 as corrected, with its CROSS REFERENCE

table,
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Figure 4.6
Rabbit Population
Cross Reference Table

FAGE 2 ERROR OFTIONS (C)> 1978 UND

XXX X% CROSS REFERENCE XK X K X
" VARTABLE NAME DEF INITION REFERENCES

LDEAT 0010 Q008

o1 0011

FERT 0009 0007

FLTPER 0014

FRTPER 0015

RAR 0005 0007 0008 0017 0019
RARI 0004

RE 0007 0005 0017 0019
RO 0008

START 0012

STOF 0013

TINE




00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
READY
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4. Example 4.

As for the remainder of the control card options, the easiest
way for the student or user to familiarize oneself with them is to
simply experiment with them. Run the program with no control cards
in effect and notice the default options that are printed. Then run
several programs that require specific control card output options,
and execute them. The one additional control card option that may
require some explanation is the DOCUMENTATION option.

The DOCUMENTATION Option provides a way for the programmer to
define any variables that appear in the program and in this way to
document the program. Each time the variable is used in any equation,

the definition will appear under the appropriate equation(s).

The DOCUMENTATION option is not available on NDTRAN Version 1.

A program that is set up for DOCUMENTATION is shown in Figure 4.7.

Figure 4.7
DOCUMENTER TEST PROGRAM

TITLE DOCUMENTER TEST
* DOC

L
% EULER

X NARROW L‘r’-q
L LEVEL .K=INTGRL(RATE1,JK-RATE2, JK) LEVEL EQUATION
DEF RATE1 IS THE FIRST RATE VARIABLE

R RATE1.KL=LEVEL .K¥CON1

R RATE2,KL=LEVEL ,KXCON2 K;‘-—-~\‘

€ CON1=,1 2

C CON2=,05

N LEVEL=100 INITIAL VALUE OF LEVEL

PARM STOP=20

PARM DT=1 K1
PARM PLTPER=2 ‘<_—-—-”
PRINT LEVEL _

DEF RATE2 IS THE SECOND RATE VARIABLE

DEF CON1 IS THE FIRST CONSTANT
DEF CON2 IS THE SECOND CONSTANT
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The program in Figure 4.7 has the variable definitions contained

in it, in the following ways:

1. In the first equation, indicated by arrow 1 , the
variabie defined is the variable appearing to the left
of the = sign. The definition appears in field
3 , as defined on page 4.4 . Field 1 is the KEY field.

It is followed by one space and then by the equation.

The equation is in field 2. Field 2 is followed by

one space then field 3. When in this form the definition
always refers to the variable to the left of the = sign.

2. The second statement in the model is a DEF statement,
indicated by arrow 2. The definition in the DEF statement
is for the named variable that immediately follows
the key field. In this instance the variable RATEl is
being defined.

3. Some programmers prefer to ptace the DEF statements at the

end of the program as shown by arrow 3.

Thus variables may be defined in the definition field of the statement
or on DEF statements that may be placed at any point in the program
after the control option statements. DEF statements or statements using

the definition field should not be continued. The program, when executed

appears with the documentation as shown in Figure 4.8.
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Figure 4.8
Program Documentation

DOCUMENTER TEST (C) 1978 UNLD
x X S 0OURCE LISTINGEG X X X Xk X

TITLE DOCUMENTER TEST

% DOC

¥ EULER

X NARROW

I LEVEL .K=INTGRL(RATE1.JK-RATEZ,JK) LEVEL EQUATION

LEVEL - LEVEL EQUATION
RATEL - IS THE FIRST RATE VARIABLE
RATE2Z - IS THE SECOND RATE VARIABLE

DEF RATE1l IS THE FIRST RATE VARIABLE
R RATE1l.KL=LEVEL .KXCON1

RATE1 -~ IS THE FIRST RATE VARIABLE
LEVEL - LEVEL EQUATION
CON1 - IS THE FIRST CONSTANT

R RATE2,KL=LEVEL .KXCON2

RATE2 - IS THE SECOND RATE VARIAELE
LEVEL -~ LEVEL EQUATION
CONZ2 - IS THE SECOND TONSTANT
C CON1=.1
CON1 = IS THE FIRST CONSTANT
C CON2=,05
CON2 - IS THE SECOND CONSTANT

N LEVEL=100 INITIAL VALUE OF LEVEL
LEVEL - LEVEL EQUATION

FARM STOF=20
FARM DT=1
FARM PLTPER=2
FRINT LEVEL

LEVEL -~ LEVEL EQUATION
DEF RATE2 IS THE SECOND RATE VARIABLE

DEF CON1 IS THE FIRST CONSTANT
DEF CON2 IS THE SECOND CONSTANT




C) Definition and Syntax of Equation Types

There are 14 basic types of equations in NDTRAN for Version 1
and for Version 2. However, the reader should be aware that the
syntax of certain equations differs somewhat between versions and will
be so noted. We wish to take these in order, beginning with the state
variable equation more frequently called a level equation.
1. LEVEL EQUATION

A level equation defines a state or level variable that is a
time-varying quantity whose present value is dependent on its own past
value PLUS or MINUS any changes in that variable over the most recent
time period. For instance, the size of a given population today is the
result of its own size yesferday plus or minus any changes in that
population over the past day. In a colloquial way the subscript J
refers to yesterday, the subscript K refers to today and the subscript
L refers to tomorrow. More precisely the subscript J refers to a given
time instant in the immediate past. The subscript K refers to the
given present time instant and the subscript L refers to a time 1nsfant
in the immediate future. We refer to the time between J and K
(whether it refer to one day, or one month or one year) as the DT period.
The DT period is always set appropriately to the given model. The

NDTRAN language form of the level equation is as follows:

L RAB.K=INTGRL{RATEIN.JK~RATOUT.JK)

L RAB.K=INTEGRAL (RATEIN.JK-RATOUT.JK)

There are a number of different computer language implementations
simiTar to NDTRAN and not all use the same form for the level equation.
The NDTRAN version is as shown above with the specific integration

method desired established with a control card. This point is discussed
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specifically in Chapter 6.

2. RATE EQUATION
A rate equation may be regarded as a policy decision that will
affect the measure of a lavel equation over time. Rates are the amount

of change that a level equation will undergo in a defined time period
(DT). A rate will increase a level or decrease a level or, together
with the other rates affecting the same Tevel, will limit the change
in the level.
An interpretation of this definition may be given as follows.
The rate at which savings will accumulate in an account of a given size
is dependent on the earning power of the savings. Here, the term rate
is always used when referring to the number of units that a level of a
given size will change in a given period of time. If you have $1000 in
a savings account, and you will earn 6 percent on that $1000 per year
that is left in the account (compounded), then the rate at which the
funds will increase is 6 percent times the amount in the account for the
year. For the first year, the rate of accumulation of the savings
account would be $60.00. The calculation would be:
RATE
$60.00

constant (times) Level

.06 * $1000.

1

*The form of the Level Equation shown for NDTRAN above is a bit
different from DYNAMO, but it implies precisely the same type of
operation. Most computer inplementations follow the form:

L RAB.K=RAB.J+(DT) (RATEIN.JK-RATOUT.JK)

The quantity of the population at time K is equal to the quantity of the
population at time J plus the change in the increases to the population
less the decreases over the solution period for the modei (DT)}. While
the form is different. The effect of the integration technique on the
variable is identical using the euler integration method.
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Most people are used to referring to the constant .06 as the rate of

interest. The term rate as used here has a specific meaning:

the amount by which the leve! variable will change per period of time.

The earning power of the savings account is expressed as a constant of
.06 per period. The period of time of compounding, a year in this
example, is the solution interval for the model or the DT. However,
these two periods do not have to be the same. In many instances it is
important to remember that the manner in which the rate equation is set
up depends upon the solution interval taken. For instance, if the interest
compounded the savings account on a yearly basis, the rate might be
calculated in one way. If the account compounded daily, the rate equation
would be set up another way. One must pay attention that the manner in
which the rate equation is defined is consistent with the length of the
solution interval chosen for the model. The constant is defined in units,
thus DT must be the adjusting factor.

The NDTRAN language form of a rate equation is:

R RATE.KL=LEVEL.K*CONST

A rate variable, on the left side of the = sign, may be defined by

a_level variable, a _constant, and/or an auxiliary variable on the right.

3. CONSTANT EQUATION

A constant in-INDTRAN does not change with time. For example, the
constant (CONST) defined above is the interest constant. The major
purpose of a constant is to aid in the conversion of a level variable or
an auxiliary variable to a rate variable.

The form of the constant equation is:
C CONST=.06

C CON=56E3
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4. INITIAL VALUE EQUATION

We have already seen that the level variable is a time-varying
variable which is dependent on some previous value. Thus the level
variable must have a value that is established before the run begins.
The initial value equation provides an initial or immediate past value
for the level variable at the start of the first iteration of the
simulation of the model. The initial value is found in an equation

with the following form:
N LEVEL=150

An alternative form for providing an initial value for a Tevel, used
if you wish to change the initial value of a level equation in a RERUN,

{See below) is as follows:

N LEVEL=LEVEL1
C LEVEL1=150

By changing the constant equation in the RERUN mode it is possible to
assign new initial values for level equations on a succession of

comparative runs.

5. AUXILIARY EQUATION

Since rates can only be determined by tevels, constants or
auxiliaries, one frequently requires the use of intermediate or auxiliary
variables. For instance, in the American Economy one of the most widely
used indicators in the system is the Gross Natiomal Product, or GNP.
This variable is an input to a good many decisions involving rates of
change of levels. For example, the levels in the economy are reasonably
clearly defined as: the number of houses, the number of factories, the
miles of road, the acres of cultivated land, and the 1ike. These would

constitute clearly defined state variables, or levels. Gross National
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Product, however, is a defined concept. It is not in fact a level or
state variable. The definition of GNP is final product output counted
once, or the sum of value added. However, by definition it excludes a
substantial number of produced goods and services. A purchased meal
for instance, is included in GNP but a meal produced at home is not.
Simply, GNP is a defined concept, that is defined at each appropriate
point of time, but it is not a state variable.

An auxiliary variable then, is one that is defined by other level
variables, other auxiliary variables, and/or constants., An auxiliary
variable, then, has two basic purposes:

A} as a defined variable;

B) in using functions.

We could assume that we are dealing with a population model of the United
States. The model is broken down by sex, but not by ethnic group.

Further, the age groups are as follows:

a) under 18
b) 18 - 24
c) 26 -29
n} over 85

Using an auxiliary equation it would be possible to add up and place in

a variable all male population under the age of 55, if that were ﬁeeded.
Further, if one were doing a study of social security recipients one
might add up all male and female persons under the age of 18 and over the
age of 65, This would illustrate the use of the auxiliary equation. The
other major use of the auxiliary equation is shown in the Chapter 5,

when functions are discussed.
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The form of the auxiliary equation fis:

A VALUE.K=VAR1.K+VAR2.K+VAR3.K
Alternative forms of the Auxiliary Equation are:

A RUF.K=CLIP(RUF2,RUF1,TIME.K,LEV)
A RUM.K=TABHL(VAL,PC.K,0,600,100)
A IN.K=(OUT.K){1-FAC.K)

In short, nearly any type of model1ing operation where it is
necessary to define the value of a variable as of a given time, would

require an auxiliary equation.

6. PARM STATEMENT
PARM statements contain information to the program and to the
interpreter regarding the parameters required for executing the program.

The basic rule in Version 2 of NOTRAN is that each PARM card may contain

only one parameter to NDTRAN, but the parameter may be defined by a

*
numeric constant or by an equation.

The normal information for the PARM statements are:

a) the solution interval or DT for the program;

b} the starting time for the program, or START;

c) the stopping time for the program, or STOP;

d) the print period for the program or PRTPER, which
tells the program how often you desire to print the
value of a variable; :

e) the plot period for the program or PLTPER, which tells

the program how often you desire to plot the value of a
variable.

*This is different from the DYNAMO approach which defines each parameter
by a numeric constant.
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PARM DT=1
PARM START=1900
PARM STOP=2000
PARM PRTPER=5
PARM PLTPER=5

SPEC DT=1,START=1950,5TOP=2000,PRTPER=5,PLTPER=5

The form of the PARM cards, or the SPEC card for Version 1, would
allow the program to start its run at the year 1950 and to stop at
the year 2000, Essentially this amounts to initializing the variable
TIME to the value of the START parameter and to allow the program to
execute until the value of TIME (an implicit variable) is equal to the
stop value of the STOP parameter. The variable TIME is never defined
explicitly., It is automatically initialized when the run begins.
Despite not being explicitiy defined in a given equation, it may be
used as often as desired on the right hand side of an = sfgn in most
equations, or as the argument of a function. The use of all PARM
cards is-required. If one is not used the standard defaults are given

in the following Table:
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Table 4.1
PARM Card Defaults
Card Defaylt
DT Runs until Stats option is

executed.

START Sets TIME = 0.0 and executes
properly.

STOP Will run until the actual
execution of model.

PLTPER Executes properly but deletes
all Plots.

PRTPER Executes properly but deletes

all numerical printouts.

7. SUPPLEMENTARY EQUATION

A Supplementary equation constitutes an equation to define a variable
where the only purpose of the variable is for output purposes in a PRINT
or PLOT statement. In this equation, any variable defined on the left
side of the equation may not appear on the right side of any other
equation except that of another supplementary equation. The form of the
supplementary equation is:

S SVAR.K=VAR1.K*RATE1.JK/CONST

Any type of variable may be used on the right side of a supplementary

equation since supplementary variables have a restricted use,
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8. CONTINUATION STATEMENT

Any program statement that will not fit between columns 1 and
72 of a program statement card may be continued on a second statement
card. This is done by placing an X in column 1 of the following card.
One space is then skipped and the statement is continued. An example
is shown below, in the context of a TABLE statement, which is the
statement that is most likely to exceed the single input card. Only
one continuation card may be used per statement. A1l 72 columns do not
have to be filled to use a continuation card, but it is advisable to

end the first card with an appropriate delimiter (,or).

»12,13,14,15,16,17,18,19,20,21,22,23,

T ALT
X 24, »28,29,30

-hll_
Nll
o
-

PO b
OlO
T e
-..l.—o
o -

T ALT=9/10/11/12/13/14/15/16/17/18/19/20/21/22/23/
X 24/25/26/27/28/29/30

9. NOTE statement
A NOTE statement is a non-executable statement in the NDTRAN

interpreter that is used to define or comment upon a particular part of

the program. Note statements may either be blank or contain an alphabetic

or numeric definition.
NOTE THE FOLLOWING EQUATION DEFINES WORK

10. TABLE statement
A TABLE statement is a part of the Table Function and is

more properly discussed in Chapter 5, Part D.

11. EXPND Statement and MACRO Procedures:

a) User Defined Procedures
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1. MACRO Definition
NDTRAN allows the writing of procedures (similar to MACRO procedures in
assembly Tanguage) if such is desired, and if such are not available as
built-in functions or procedures. This is accomplished using the MACRO
capability together with the EXPND statement that are part of the NDTRAN

statement procedures. Essentially the user writes the MACRO procedures

as follows:

MACRO MAIN(POS,VEL,CONST)
L POS.K=INTGRL(VEL.JK)

N PQS=0

R VEL.KL=CONST*TIME.K
MEND

MACRO MAIN{POS,VEL,CONST)
L POS.K=INTEGRAL (VEL.JK)
N POs=0

R VEL.KL=CONST*TIME.K
MEND

The MACRO procedures begins with the word MACRO in column 1 of the card
as shown above and terminates with the word MEND. MACRO DEFINITIONS

MUST ALWAYS BE INSERTED INTO THE PROGRAM BEFORE ANY EXPND statements for
that MACRO.*

The interpreation to the MACRO statement is:

The MACRO key word indicates that a user defined function or

subroutine is to be developed. The first word or name following the

blank is the name of the procedure (MAIN). The dummy arguments, up to 18
in_number allowed to be used, are enclosed in parens ) following
the name of the procedure. In this instance the three arguments are POS,

VEL and CONST. Arguments to a MACRO procedure never use time subscripts.

*This is one of two exceptions to the lack of ordering required of
NDTRAN programs. The other is that RERUN cards must come at the end
of the main program.
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There is a relatively wide latitude for statements,following the rules
already established, that can be used as arguments in a MACRO procedure.

The illustration above indicates that the arguments include:

POS a level variable;
VEL a rate variable;
CONST a constant.

2. EXPND Statement

The MACRO procedure may be called or used as many times as desired
by the use of the EXPND statement. This consists of the key word EXPND
followed by the name of the procedure, followed in parens | ) by
the actual arguments desired to be used. Figure 4.8 is a sample user
generated program which illustrates the use of the user written MACRO
procedure shown above.

Figure 4.9 is the actual program produced by the interpreter and
is given as a source listing. Note the expansion which takes place

due to the MACRO Usage.

Figure 4.8
Program Using MACRO Statement

TITLE USE OF MACRO CAPABRILITY
X NARROW

¥ CHECK
X NOSTATS
MACRO MAIN(POS,VEL sCONST)
L POS.K=INTGRL (VEL ,JK)
- N POS=0
"R VEL.KL=CONSTSTIME.K
MEND
» EXPND MAIN(POS1,VEL1sCONST1)
- € CONST1=2
'+ EXPND MAIN(POS2,VEL2,CONST2)
- € CONST2=3
' PARM DT=}
* PARM START=0
PARM STOP=20
PARM PLTPERw=1
PLOT POS2=2,P0S1=1
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Figure 4.9
MACRO Statement Procedure
User Defined

X X X X X SOURECEE L ISTING ¥ K % X X

0001 TITLE USE OF MACRO CAPARILITY
0002 % NARROW

0003 % CHECK

0004 % NOSTATS

0005 MACRD MAINCPOSsVELsCONST)
0006 L POS.K=INTGRL (VEL.JK)

0007 N P0S=0

0008 R VEL .KL=CONSTATIME.K

0009 MEND

0010 EXPND MAIN(POS1sVEL1yCONST1)
0011+ L POS1.K=INTGRL(VEL1.JK) |
0012+ N POS1=20 -+ - qewcva‘l'c d
0013+ R VEL1.KL=CONST1XkTIME.K

0014+ MEND

0015 C CONST1=2

0016 EXPND MAIN(POS2yVELZ2,CONST2)
0017+ L POS2,K=INTGRL (VEL2,JK)
0018+ N POS2= +- qc nevaited
0019+ R VEL2.KL=CONST2KTIME.K

0020+ MEND

0021 C CONST2=3

0022 PARM DT=1

0023 PARM START=0

0024 PARM STOP=20

0025 PARM PLTPER=1

0026 PLOT POS2=2,F0S1=1

In the program, the user defined MACRO procedure (appearing before
the EXPND statements) is given in lines 5 through 9. The first EXPND
statement is in line 10 and the second EXPND statement is in line 12(figure 4.8).
It is possible for the user to have as many EXPND statements as is desired
for any given MACRO procedure. As the expansion occurs, the arguments
from the EXPND statement replace the dummy arguments of the MACRO de-

finition statement. This substitution is done by corresponding positions

in_the argument list of the MACRO statement and the EXPND statement.

Figure 4,10 is the output from the program shown in Figure 4.8.
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Figure 4.9.1
MACRO Statement Procedure
User Defined

AR KK KK SO0URCE LT ST LI NUG ACROK RO ¥0K kK

100601 % USE OF MACRO CAFABILITY
10002 ¥NARROW

10003 xNOSTATS

10004 MACRU MAIN(POS»VEL»CONST)
10005 L FOS.K=INTEGRAL(VEL.JK)
19006 N FOS=0

10007 R VEL.KL=CONSTXTIME.R

10008 MEND

10009 EXFND MAIN(POS1,VEL1,yCONST1)
100104 L FOS1.K=INTEGRAL (VEL1.J4K)
10011+ N POS1I=0

10012+ R VELL.KL=CONST1XTIME.K
10013+ MEND

10014 C CONSTi=2

10015 EXPNIN MAIN(FOS2,VEL2yCONST2)
10016+ L POS2.K=INTEGRAL(VEL2.,JK)
10017+ N F0OS2=0

10018+ R VEL2.KL=CONSTZ2XTIME.K
10019+ MEND

10020 C CONST2=3

10021 FLOT FOS2=2,F0S1=1

10022 SPEC DT=1,START=0,STOF=20yFPLTPER=1

The only difference in the MACRO procedures for Version 1

and Version 2 are in the nature of the line numbers attached

to each statement, the word INTEGRAL, and the substitution of

the SPEC statement for the PARM statements.
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Figure 4.10
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MACRO User Procedure
Program Plot
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The example used in Figure 4.9 and 4.9.1 is that of a rocket

simulation, where the position of the rocket at any given time instant

is a linear function of time.

The MACRO procedure defines this. POS1

in the plot of Figure 4.10 shows the position of the rocket over time

when a given coeffient is used with TIME.

POS2 in the plot shows the

position of the rocket over time when a larger coefficient is used. The

user defined procedure is called two times.

Each time that it is called

NDTRAN prints out the complete user defined procedure with the appropriate

arguments in place. Each of the expanded procedure statements is

preceeded by a + sign. In this way the student may verify that the user

defined procedure has been properly set up and that the proper arguments

are substituted into the user defined procedure at the appropriate

Tocations in the program.
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b) Delay Procedures

NDTRAN has a number of procedures that contain integration and are
normally inserted in an information or materials flow path. As defined
in INDUSTRIAL DYNAMICS and PRINCIPLES OF SYSTEMS, rates may not directly
affect different rates, but may affect other rates only through levels,
There is perfectly sound modeling theory to support this. Complex social
systems do not react immediately to a given stimulus. For instance,
assume that 35 packages are placed in the postal system at the same time.
If they were all delivered simultaneously and without any time lapse
between posting the package and delivery of the package, the result would
in fact be a STEP function, defined below. In fact there is a time lapse
between the posting of the package at the mailing station and receipt
of the package at the delivery address. In NDTRAN these material delays
are defined by use of the DELAY1, DELAY3 and SMOOTH functions.

Figure 4.11 shows the Flow Diagram of a system contéining a
materials, goods or persons Delay Function which might be a DELAY1,
DELAY3 or SMOOTH.

Figure 4,11
Materials Delay

DEL

DEL
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Information delays, identified as DLINF1 and DLINF3 are placed in
the information channel which means that they come between LEVELS and
subsequent RATES. The Flow Diagram in Figure 4,12 below indicates a
first order negative feedback loop with and without a delay procedure.
The information delay procedure might be either a DLINF1 or a DLINF3.
The delay procedures cause certain elementary equations to be
generated and these are always shown on the program source listing,
with the numbers of the generated equations being followed by a +
sign. The symbol for the materials delay procedure and the information

delay procedure, respectively, is shown betow. The solid arrow into the

DELAYL L ouTRUT TIME DELAY




Figure 4.12

First Order Negative Feedback Loop
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delay procedure symbol indicates that this is a materials delay. The

name in the Tower left hand box of the symbol is the name of the delay
“procedure -- i.e., DELAY1 or DELAY3.* The name of the output variable
as specified in the equations as well as the type of variable is shown
in the middle box, along with a symbol for the type of equation,
usually a RATE VARIABLE.

The delay time, time constant, or the averaging parameter is shown
in the lower right hand box. That is, one might wish to delay the output
by 15 DT units, by 6 DT units, etc.

The symbol for the information delay procedures, DLINF1 and DLINF3

is shown below with dotted Tines in and out:

)
v
DLINF?
or OUTPUT TIME
DLINF3
]
!
\ 4

The information in the lower left hand box shows the name of the procedure,
that is DLINF1 or DLINF3. The name in the lower middle box shows the name
of the output variable from the procedure as well as the type of variable
it is. Usually the output variable from an information delay will be an
AUXILIARY variable. The average time delay is given in the lower right
side. Figure 4.13 and 4.13.1 show NDTRAN programs that have DLINF1 and
DLINF3 reacting to STEP functions. The output is shown on figure 4.14.

*Structurally the SMOOTH procedure is similar to a DELAY1 procedure
and is generally so identified in the literature. SMOOTH produces a first
order exponential average of a physical (conserved) flow.
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The NDTRAN language form to call these procedures is shown below:

PROCEDURE NAME NDTRAN LANGUAGE SYNTAX
DLINF1 EXPND DLINF1(OUT,IN,TRX)
DLINF3 EXPND DLINF3(OUT,IN,TRX)
SMOOTH EXPND  SMOOTH{OUT,IN,SMTM)
DELAY3 EXPND DELAY3(OUT,IN,DEL)
DELAY1 EXPND DELAY1(OUT,IN,DEL)

In all instances, the variables are identified as:

ouT The output variable from the MACRO procedure.
IN The input variable to be delayed or smoothed.
TRX Time to recognize X in time units where

X is the level or auxiliary variable whose
time is being delayed.

DEL Delay (in time units) between the input and
the output or between IN and OUT.

SMTM Smoothing (averaging} time.

The Version 1. Language form to call these procedures is shown below:

PROCEDURE NAME NOTRAN LANGUAGE SYNTAX
DLINF1 EXPND  DLINF1(OUT,IN,TRX,INIT)
DLINF3 EXPND DLINF3(OUT,IN,TRX,INIT)
SMOOTH EXPND  SMOOTH{OUT,IN,SMTM,INIT)
DELAY3 EXPND DELAY3(OUT,IN,DEL,INIT)

DELAY1 EXPND DELAY1(OUT,IN,DEL,INIT)




In all instances, the variables

ouT

IN

INIT

TRX

DEL

SMTM

PROCEDURES
SMOOTH
DLINF1

DLINF3
DELAY1
DELAY3

are identified as:

The INIT or initial value for the variables to be delayed is unique for

the different types of procedures where IN0 =

4.47

The output variable from the MACRQ
procedure,

The fnput variable tg pe delayed or
smoothed,

The initial valye for the variable to
be smoothed.

Time to recognize X in time units
where X s the level or auxiliary
variable whose time is being delayed.

Detay (in time units) between the input
and the output or between IN and QUT.

Smoothing (averaging) time.

INITIAL VALUE CALCULATION

INIT = INO * SMTM
INIT = INO

INIT = INO

INIT =

IN0 * DEL

INg * (DEL/3) i

INIT

W

Figure 4.13 shows the program and Figure 4.14 the plotted output

of a STEP function and the response of DLINF1 and DLINF3 to that STEP

Function. In Figure 4.13 Tine 6 is the output of the step function.

As shown in the program and on the plot, the variable INPUT.K has

a value of 0 (zero) until period 5, when its value is changed to

1 (one). The value then remains at the level 1 for the rest of the

pProgram. The value of the step function is then input to the DLINF and

DLINF3, with the results being plotted. The first order delay, DLINF1 is

plotted with the A symbol and DLINF3 is plotted with the B symbol.
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0001
0002
0003
0004
0005
0004
0007
0008+
0009+
0010+
0011+
0012+
0013
0014+
0015+
00146+
0017+
0018+
0019+
0020+
0021+
0022+
0023+
0024+
0025
0026
0027
0028
0029
0030
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Figure 4.13
Step Function and Delays

¥ x SOURCE LISTING Xk k % x

TITLE STEP RESPONSE OF DLINF1 AND DLINF3Z
¥ NARROW

X NOWARN

X NOSTATS

¥ EULER

A INPUT.K=STEP(1,5)

EXFNED DLINF1(0UT1yINPUT,TRX)

R $R11-KL“(INPUT.N-$L11.K)/TRX
L $L11.K=INTGRL ($R11 . JK)

N SL11=INPUT

MEND

EXPND DLINF3(OUT3s INPUT» TRX)

R $SR12,KL=CINPUT .K-$L12.K)/(TRX/3)
L $L12,K=INTGRL($R12,JK)

N SL12=INPUT

R SR22.KL=($L12,K-$L22,K)/(TRX/3)
L SL22.K=INTGRL ($R22,JK)

N $L22=INPUT

R $R32.KL=(!L22.K-‘L32.K)/(TRX/3)
L $SL32.K=INTGRL(S$R32, JK)

N $SL32=INPUT

A QUT3.K=$L32.K

MEND

C TRX=15

PARM DT=1

PARM START=0
PARM STOP=50
PARM PLTPER=1
FLOT INPUT=S,0UT1=As0UT3=R

Figure 4.15 is a program that indicates the SMOOTH (delay) procedure,

where the input to the procedure is a sine curve defined as SIN(6.28*TIME).

On the plot of Figure 4.16 the smoothed SINE wave is plotted with an

S
U

symbol while the regular unsmoothed SINE wave is plotted with the
sumbo1.
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Figure 4,131
Step Response of DLINF1 and DLINF3

L0001 x STEF RESFONSE OF DLINF1 AND LLINF3
10002  XNARROW

10003  XNOSTATS

10004  XEULER

10005 A INFUT.K=STEF(1y5)

10006 ~ EXFNI DLINFI1(OUTLs INPUT,TRXs INIT)
10007+ R $R11.KL=C(INFUT.K-$L11.K)/TRX
10008+ L $L11.K=INTEGRAL ($R11.,JK)

100094 N $L11=INIT

10010+ A OUTL.K=$L11.K

10011+ MEND

10012 EXPND BLINF3(OUTS, INPUT,TRX» INIT)

10013+ R SRIE.KL*(INPUT.N"$L12.N)/(TRX/3)
10014+ | $L12.K=INTEGRGL($R12.JK)

10015+ N $L12=INIT

10016+ R $R22.KL=(SLIZ’N*SLQZ.N)/(TRX/3)
10017+ L $L22.K=INTEGRGL($R22.JN)

10018+ N $L22=INIT

100194+ R $R32.KL=(iL?Z.K-iLSE.K)/(TRX/3)
10020+ L $L32 . K=INTEGRAL ($R32, JK)

10021+ N $L32=INIT

10022+ A OUT3.K=$L32.K

10023+ MEND

10024 C TRX=15

10025 € INIT=0Q

10026  PLOT INPUT=Sy0UT1=A,0UT3=B
10027 SPEC DT=1sLENGTH=50yPLTFER=1

_— 1
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Figure 4.14
Step Response of DLINF1 and DLINF3

Plotted Qutput
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Figure 4,15
SMOOTH Function

X X ¥k % X S0URCE LISTING X % % % x

0001  TITLE TEST OF SMOOTH MACRO

0002 ¥ NARROW

0003 % CHECK

0004 % NOSTATS

0005 € SMTM=,1

0006 A UNSMTH.K=SIN(&,28%TIME.K)
0007 R UNSMTR.KL=UNSMTH. K

0008 EXFPND SMOOTH(SHTH UNSMTR » SMTM)
0007+ L $L11.KnINTGRL(UNSHTR.JN~$R11.JK)
0010+ N $L11=UNSMTRXSMTM
0011+ A SMTH.K=8L11.K/SMTM
00124+ R $R11.KL=SMTH.K
0013+ MEND
0014 FPARM [T=,01
0015 PARM START=0
0016 PARM STOF=1
0017 PARM PLTPER=,02
0018 FPLOT UNSMTH=U,S8MTH=S
FAGE 2 TEST OF SMOOTH MACRO (C) 1978 UNI

‘. M

Figure 4.15.1
SMOOTH Function

RKOR KKK KKK SOURTCE LISTING HOIOK XOKOKR %Ok K

10001 % TEST OF SMOOTH MACKO
10002  KNARROW
10003  XNOSTATS
H 10004  C SMTM=.1
10005 © INIT=0
10004 A UNSMTH K=SINC&.28%T IME.K)
10007 R UNSMTHR.,KL=UNSMTH.K
10008  EXFND SHOOTH(SMIH, UNSMTHR ) SMTMy INTT)
LUOOS+ L $L11 K=INTEGRAL (UNSMTHE Ok ~$K 11, 4K
10010+ N SL1i=TNIT
10011+ A SMTH.K=$L11.K/SMTH
IN01 2+ W $RL)RL=uMim .
10014+ MEND
10014  PLOT UNSMTH=UsSHIH=S
10015 SPEC DT=,01sFPLTFER=,02sSTART=0yLENGTH=1
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A A e I S e S B R B .

Figure 4.16
Test of the SMOOTH Procedure:

Plotted Output
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Q001
0002
0003
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0010
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0015+
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0020+
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Q028
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Figure 4.17 and 4.18, respectively, show the program to generate a
DELAY1 and DELAY3 and the plotted output from that program. The input
to the DELAY functions is a RAMP function. The source program shows

Figure 4,17
DELAY1 and DELAY3 Test with RAMP

X X S0URCE LISTING X X k x x

TITLE DELAY TEST WITH RAMP
NARROW

NOSTATS

CHECK

EULER

Q.KL=Q1+RAMF(RS+RT)

Q1=5

RS=1

RT=5
XFND DELAY3(OQUT»@sDEL)
$111.K=INTGRL(Q.JK~$R11,JK)
$L11=0X%DEL/3
$R11.KL=$L11.K/(DEL/3)

$1.21 K=INTGRL ($R11. IK~$R21, JK)
$L21=Q%XDEL /3

$R21 .KL=%L21,K/(DEL/3)
$L31.K=INTGRL ($R21 ., JK-0UT. JK)
$1.31=0XDEL /3

OUT .KL=%L31.K/(DEL/3)
MEND

NOTE TEST OF DELAY ONE
EXPND DELAY1(0OUT1,QyDEL)
L SL12.K=INTGRL(Q.JK-0UT1,JK)

N $L12=Q%DEL
R OUT1.KL=$112.K/DEL

* I M

AZr2ZrR2Zrmooo s

MEND
€ DEL=20
PARM DT=1

FARM START=0
FPARM STOFP=50
FARM PLTPER=1
FLOT OUT=3(0,40),0=Rs0UT1=1

the RAMP Function on 1ine 6, with the RAMP value being input to the
DELAY3 on line 10and to the DELAY1 on 1ine22 . The RAMP value is
plotted with an R, the DELAY3 with a 3, and the DELAY1 with a 1 symbol.
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m

: Figure 4.17.1
DELAY] and DELAY3 Test with RAMP

ER RS R $& ¥ U RCE LI 87T ub HRRHOROK K

Lol # DELAY TEST WITH RAMP

13002 XNARROW

10003 XNQSTATS

10004 ¥EULER

13000 R Q.KL=R1I+RAMP{RS/RT)

10006 © Q1=5

10007 € RS=]

10068 € RT=95

10007  EXFND DELAY3(OUTQsDEL, INIT)
10010+ L $L11,K=INTEGRAL(Q.JK~$R11..JK)
100114+ N $L11=INIT

10012+ R $R11.KL=$L11.K/(DEL/X)

L0013+ L $L21 . K=INTEGRAL($R11.JK-$R21,.IK)
100144+ N $L21=INIT

10015+ R $R21.KL=8$L21.K/(DEL/3)

100144 L $L31.K=INTEGRAL ($R21 ., JK-0UT . JK)
100174+ N $L31=INIT

10018+ R DUT.KL=$L31.K/(DEL/3)

100194+ MEND

10020 NOTE TEST OF DELAY 1

10021 EXPND DELAY1(DUT1,Q,DEL» INIT1)
10022+ L $L12.K=INTEGRAL (Q.JK~0UT1 ., JK)
10023+ N $L12=INIT1

100244 R OUTL.KL=#L12.K/DEL

100254+ MEND

10026 C INIT1=100

10027 © DEL=30

10028 € INIT=33,33

10029 PLOT DUT=3(0,40),Q=K,0UT1=1
10030 SFEC DT=1,START=0sSTOF=50FPLTFER=1

The RAMP function is defined on Tine 10005. The RAMP value
is input to the DELAY3 in line 10009 and to the DELAY1 in
l1ine 10021.
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DELAY] and DELAY3 Test with RAMP
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It is possible using combinations of functions or combinations
of procedures to obtain'results not available from any existing
function or procedure. Let us say that for some reason it was
desirable to show a second order DELAY because of some circumstance.
This could be done using a DELAY1 to delay a regularly programmed
first order negative feedback loop. The first order negative feedback
loop effect would be expected to approach a given goal, as for instance
4 company attempting to attain a desired level of inventory. If there
were some delay in receiving ( or perhaps ordering) goods there would
be an overshoot and oscillation effect with a.fina] stabilization.
This type of combination of functions or procedures may be used any
time that a unique effect is desired. The combinations of functions
or procedures may be usually employed with all of the functions in
NDTRAN. |




Chapter 5
NDTRAN: Print, Plot and Functions

This chapter seems dictated rather by considerations of length
than considerations of aesthetics. The three topics covered here will

be: Printed Output, Plotted Output and Functions.

A. Printed and Plotted Output

1. PRINT Statement

The PRINT statement establishes the variables that are desired to
be printed as output. The PRINT command 1s:(recall that all NDTRAN language
statements begin in COLUMN 1):

column 1
PRINT RAB,RB,RD

The title to the program will appear automatically as a header to the
printed output, If you desire additional information as a title to the
printed output, simply place a NOTE card with some appropriate
information immediately preceeding the PRINT statement. If there are
several blank and non-blank NOTE cards immediately preceeding the
PRINT statement, NDTRAN takes the first non-blank NOTE card as the
additional information for the title to the printed output.

In the source program of Figure 5.1 we note that the title to the
table output is the information in the title control card followed by
the information in the NOTE card that irmediately preceeds the PRINT
statement. The printed output resulting from Figure 5.1 is shown in

Figure 5.2.

5.1
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Figure 5.1
Rabbit Model: Population

FAGE 1 RABBIT MODEL (C) 1978 UND
¥ X X X X SOURCE LISTING X X X X X

0001 TITLE RAEBBIT MODEL

0002 % EULER

0003 X XREF

0004 % NARROW

0005 L RAB.K=INTGRL(RB.JK~RD.JK)
0006 N RAB=150

0007 R REB.KL=RAB.KXFERT

0008 R RINKL=RAB.KXDEAT

0009 C FERT=.04

0010 € DEAT=,04

0011 FARM DT=.08

0012 PARM START=0

0013 PARM STOP=100

0014 PARM PLTPER=10

0015 FARM PRTPER=10

0016 NOTE RABBIT MODEL FPRINTED DATA
0017 FRINT RABsRB:RD

0018 NOTE RABBIT MODEL PLOTTED DATA
0019 PLOT RAB/RBsRD

Figure 5.1.1
Rabbit Model: Population

* RABBIT MODEL
*EULER

*XREF J
*NARROW

L RAB.K=INTEGRAL (RB.JK-RD.JK)

N RAB=150

R RB.KL=RAB.K*FERT

R RD.KL=RAB.K*DEAT

C FERT=.06,DEAT=.04

SPEC DT=.08,START=0,STOP=100,PRTPER=10
NOTE RABBIT MODEL PRINTED DATA

PRINT RAB,RB,RD




RAEBBIT MODEL - RABBIT MODEL PRINTED DATA

TIME
E+00

0.00
10.00
20,00
30.00
40.00
90,00
60.00
70.00
80.00
?0.00

100.00

RAR
E+03

0.1500
0.16832
0.,2237
0.2732
0.3336
0.4074
0.4975
0.6076
0.7420
0.9061
1.1066

Figure 5.2

Rabbit Population

Printed Data

RB
E+00

?.000
10.991
13.422
16.391
20.017
24,445
29.832
36.456
44,320
94,369

66,395

RD
E+00

4.000
7.327
8.948
10,927
13.345
16.297
19.902
24 .304
29.4680
346,246
44,2464

5.3

(C» 1978 UND

The reader should note that the information printed in the table

appears in scientific notation or E-Format. The information may

appear in either F-Format or E-Format. Should the characteristic of

any number become iarger than 4 or less than

-1

the information

printed will change automatically to an E-Format. The accuracy of

output is 5 digits. Thus, scaling is set by the largest number for

each variable. The reader may wish to experiment a bit with a simple

model to determine the way that NDTRAN scales output.

In NDTRAN version 1 some of the variables may
be in scientific notation , and other not.

Version 1 handles the form of the printed output

somewhat differently. The accuracy is the same.

m
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When the wide output option is used, NDTRAN will print a maximum
of 10 variables per print statement across the page. When the narrow
option is used, NDTRAN will print a maximum of 5 variables. The TIME
variable is printed in both instances. NDTRAN suppresses printing
of all variables on a PRINT statement beyond the fifth variable for the

narrow option and beyond the tenth variable for the wide option.

2. PLOT Statement

The NDTRAN user may obtain plots of variables against time,
called the TIME PLOT, or to generate a variable against variable plot.
The latter form is generally considered to be a sensitivity plot where
one variable is a goal variable and the other is a policy variable and
one desires to determine whether a goal variable is sensitive to
policy changes.
Time PLOT

The PLOT statement establishes the variables that the programmer
wishes to display as a graph, with time as the independent variable
and some other variables as the ordinate. The PLOT statement has

several possible forms, a number of which are noted below:

i. scaling by first variable: PLOT RD,RB,RAB
i1, automatic scaling + PLOT RD/R8/RAB
iii. scaling by definition :  PLOT RD(0,45)/RB{0,70)/RAB(0,1200)

iv. scaling by definition
and scaling by default : PLOT RA8(0,1200)/RB/RD

v. independent scaling:
1) PLOT RAB(0,1200),X/RD,RB/Z

2) PLOT RAB(0,1200),X/RD,RB(0,40)/7
3) PLOT RAB{O,*)
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In a1l instances above We have allowed the PLOT symbol-- i.e., that
which appears on the graph -- to default to the symbols provided by
NDTRAN. It is possible to assign separate plot symbols as indicated
below:
vi. PLOT RAB=1{0,1200)

vii. PLOT RAB=+{0,*)
Let us take these few possibilities one at a time and explain them
fully before showing a few examples of the PLOT statement options.

i. Automatic scaling on first variable, PLOT symbol default.

PLOT RAB,RD,RB

Note first that the order of the variables was changed in this
plot statement as compared with the illustration in i. on the
previous page, Whichever variable is placed first, when the variables
are separated by commas will be the variable on which the other
variables are scaled. In the case illustrated the programmer desires
to plot all three variables on variable RAB and to use the default
plot symbols. On a PLOT statement when the variables are separated
by commas then all variables on the PLOT statement are scaled on the
same scale as the first variable. To assign PLOT symbols to the three
variables under the same scaling conditions, the statement would be:

PLOT RAB=1,RD=2,RB=*

ii. Automatic Scaling, PLOT symbol default.
PLOT RAB/RD/RB

In this instance the programmer desires to plot three variables
and the upper and lower limit of the variables are not known. It is

desired to plot each of the variables on independent scales (independent
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of each other) hence the slash marks "/" must be used to separate
the variables to be plotted. NDTRAN will automatically assign a PLOT
symbol for each variable and will automatically fully scale each variable
on its own scale basis, If the programmer desires to PLOT the three
variables as indicated here but to assign PLOT symbols , the form
used would be:

PLOT RAB=1/RD=*/RB=A
The same automatic and seperate scaling would be used, but the variables
would be plotted on the graph with the symbols, respectively

as shown to the right of each equals sign.

iii. Scaling by definition, PLOT symbol default.
PLOT RAB(0,1200)}/RD{0,45)/RB(0,70)

In this instance the programmer desires to specify the scale
for the plotting of each variable. This is most useful in any run
after the first run where the programmer has some idea of the range and
the starting value for each variable. Should the programmer, on the
initial run, know the initial or lower value of a variable, but
not the upper value it may be desirable to establish the lower plot
Timit but to allow automatic scaling for the upper limit. This would
be done as follows:
PLOT RAB(o,*)/RD(0,*)/RB{0,*)
In this instance NDTRAN will provide the plot symbol and will automatically
scale the variables, independently from the given lower limit to the
calculated upper 1limit. Again PLOT symbols may be supplied as follows:
PLOT RAB=1(0,*)/RD=A(0,*}/RB=B(0,*)
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iv. Scaling by definition and by default.
PLOT RAB(0,1200)/RB/RD

In this instance NDTRAN will scale the variable RAB as indicated
between the lower limit of zero and the upper 1limit of 1200. However,
each of the variables RB and RD will be scaled automatically and

independently of each other and of RAB.

v. Independent scaling.

It is possible to give three illustrations of the kind of independent
scaling that is possible with NDTRAN. In the first instance:
PLOT RAB(0,1200),X/RB,RD/Z
In this case variable RAB will be plotted on the scale from zero to
1200. Variable X will be plotted on the same scale as RAB. Variables
RAB and X will be independent of the scaling of all other variables
in the PLOT statement. Variables RD and RB will also be independent
of all other variables shown, but variable RD will be plotted on the
same scale as RB. Variable Z will be independently scaled.
The second possibility is shown below:
PLOT RAB(0,1200),X/RD,RB(0,40)/2
This is the same as the previous example except for the middle variables
RD and RB. In this instance the scale 1imits for RB are shown and the
variable RD will be scaled on the same basis as RB.
The third possibility is:
PLOT RAB(0,*)
This is the most useful kind of scaling for a first or preliminary
run of the program where the programmer knows the lower limit, but

is not clear as to the upper limit of the variable being calculated.
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In this instance NDTRAN will accept the zero as the lower limit, but
will provide automatic scaling on the upper limit. If the programmer
desires to use this but wishes to assign a plot symbol, then:

PLOT RAB=1(0,*)

Let us take a few examples of these plot possibilities. The program
used was as shown in Figure 5.1, with the exception that the PLOT
statement options vary. The plot statement options used are indicated
for each table. In some instances the FERT and DEAT constants were
changed somewhat to make the distinction between the variables more
distinct on the plotted output.

Figure 5.3 is an illustration of scaling by the first variable,
or where the delimiters in the PLOT statement are commas. This
illustrates two common errors in using any PLOT graph. First, the
PLOT period chosen was too large, so that the plot is relatively
small, hence distorted. The second problem is that since the variables
are plotted on the basis of the scaling of the first variable { in
this case the variable with the smallest range) not all of the points
for all of the variables are plotted. Figure 5.4 shows the same method

of scaling with a more appropriate plot size and arrangement of variables.

Figure 5.3
Plot Scaling:First Variable
PLOT RD,RB,RAB PLTPER=5 STOP=50
FERT=.08 DEAT=,02
RABBIT HﬁDEL - RABBIT MODEL PLOTTED DATA (C) 1978 UND
R=RD A=RB B=RAB

3 17.25 31.9 A43.75 40
R L L L lAi L + L L] * » * - * * * » [ ] * + L] L] L ] L » 4 L] L]
* R L A | 3 » *
L] R * * ﬁ L ] *
» OR * * »
* L OR » +
L} L] [ [ & L] * * * * L] * +* L] [ ] * L] * * * * L] [ ] * * * L] * R
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Figure 5.4
Plot Scaling: First Variable
PLOT RAB,RB,RD PLTPER=2 STOP=50
FERT=.08 DEAT=.02
FAGE 5 RABRIT MODEL - RARRIT MODEL FLOTTED DATA (C) 1978 UND
R=RAR A=RE B=RD
BAR 150 862.5 1575 22872.5 3000
0 F: * L) » L] * + 1 L) * L) . » + * + L] * L2 + + * [ - + + * +* L]
R , . . .
!R + * * *
T OR * » L] +
I * R + +* L] L
M + R L4 * * L]
E + R +* - +* L
* R * * L ] L ]
* R [ ] + ) L
* R + L ] L *
:?0 L) . * ORO * * + +* + + * * L] + * * * * +* * * + * * » L4 L ] +
* R + * L] *
* R » * * L
[ ] R * - * L]
] Rl * ] +
L OR * + L]
* * R * * *
L) + R L} * L]
* + R » * »
L 4 R + +* +
40 ﬁ * * +* * + + * * * ) + 1 ] * QRO * L ] + [ * » L +* L ] [ ] * +* *
A * + R +* +
é * L ] R L 3 L]
OQ + + QR L
OA +* L L R *
50 +* A * * L] ¢ L) L] [ I } * * » * * L L] L Y ) LI ] * LI ) L] L . R

Even in this instance the variable RD did not appear on the graph
since it did not yet ( by TIME equals 50) reach a minimum value of

150, which was the minimum value for variable RAB. Variable RB reached

the minimum value by period 40.
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Perhaps the most common method for scaling variables is to scale

Figure 5.5
PLOT Scaling: Independent Scaling
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FERT=.12

PLOT STATEMENT OPTIONS -
2=RR 3=RD

fuy
- L - - - L ] > - L ] L > * - L J - L ] > L ] - - - - L L L d

RARRIT DATA

4125
498.5

148

L] * + L] *

-

* » - -, * L] - L L * & » -
-
L
*
*
>

* *

- * & T T -
jy

PLTPER=2
DEAT=.04

GRAFHED

6112.5
739.25
249

* L]

*
»

-
-

LI S IR T O I T DR R TEEE TR R R R R U T T S S,
.
.

-
*

-

-

N
-

-

STOP=50

(C) 1978 UND

K

810
280

330

bt e * o & & & 2 * + + & T * T 9+ & e s 9 oe " & w

0

123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
23

23

123
23

12

23

123
123
123
23

23




In this type of plot the scale for each variable is indicated at
the top of the graph, and the assigned PLOT symbols are also indicated.
There is some danger in using this type of plotting, as shown above
in as much as the variables may be such that they all plot in the same
position on the graph, although scaled independently. The variables
are identified by their plot symbols at the top of the graph. The fact
that many of the points for the different variables OVERLAY is shown by

the numbers at the right side of the graph. Only a 1 symbol is plotted

but the right side of the graph indicates that variable symbols 1 and
2 and 3 overlay for that specific point.

Another option that may be used to independently scale one
variable and to scale the other two together is shown in Figure 5.6.

The first variable RAB is given a lower T1imit and the upper limit is
scaled by NOTRAN with the second and third variables scaled on the second
variable RB. Again one common point shows on the right side of the

graph.

The thing that the programmer using NDTRAN must remember is that
the purpose of a graph (plotted output) is to show the relationships of
the data variables as well as their magnitude as accurately as possible.
Therefore the perspective of the output is important. The programmer
may wish to make a number of different kinds'of PLOT runs in order to
obtain precisely the most appropriate plot for the variables to be
presented. Scaling is always shown at the top of the graph. PLOT points
overlaid are shown on the right side of the graph. For maximum accuracy

use the plotted output with the tables for the same variables.
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Figure 5.6
Plot Scaling: Split Scaling

PLOT RAB(0,*)/RB,RD STOP=50
FERT=.08 DEAT=.02
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Independent Variable PLOT

Another feature of NDTRAN plotting capability is the ability

to generate variable against variable plots. These could be used in

sensitivity testing of models, that is comparing what happens to a
goal variable if a policy variable is changed. Al1 of the conventions
noted above apply to the variable against variable plotting. The only
difference is that following the primary variables that are to be
plotted on the Y AXIS, a double slash is placed in the PLOT card.
Following this the independent variable or the variable to be

plotted on the X AXIS is given. The form is:

PLOT RAB//RB
The other options are retained as noted above. This is illustrated in
Figure 5.7.

It is easy to get additional plots on the same graph. Figure 5.8
shows that the programmer desires to plot RB against RAB and RD against
RAB. In this instance as in many cases the two sets of points exactly
overaly. THIS OVERLAY IS NOT SHOWN ON THE RIGHT SIDE OF THE VARIABLE
AGAINST VARIABLE PLOT AS IT IS IN THE TIME PLOT. Figuré 5.9 shows
the same plotted output but with the variable RD being plotted on
the scale of RB ( instead of independently as in Figure 5.8). The
variable against variable plot in NDTRAN is a standard size as shown
in the figures and operates on the NARROW option basis. If one should
increase the point density by changing the PLTPER parameter, the size

of the plots remains the same but the density of points changes.
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Figure 5.7
Plotting: Variable by Variable
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Figure 5.8
Plotting: Variable by Variable
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] Figure 5.9
Plotting: Variable by Variable
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Rerun and Comparative

It is possible to have NDTRAN programs make a number of different
runs in the same program, using the RERUN card. Four parts of a program
may be changed in any or each RERUN from the main program or from a
previous rerun:

1) constants; 3) DT size;

2) tables; 4) Integration method.

The problem shown below indicates the standard rabbit model shown elsewhere
but with two rerun statements. In the first rerun the value of the
DEAT variable is changed. In the second rerun the integration method
is changed. The changed integration method is to determine what occurs
as the model is changed from a discrete (stochastic) model to a continuous
model. Whenever a variable is change from the main program in any rerun,
or from one rerun to another rerun the changes remain in effect for
all subsequent reruns,

The following comments refer to a program shown in Figure 5.10.
The program is set up with whatever control options are desired and with
the program specified in any way desired by the modeler. All of the PRINT

and PLOT statements come at the end of the main program and before

any of the reruns. For the program, we desire to PRINT and PLOT

the variables RAB and RB:

1) Main Program PRINT RAB,RB,RD
PLOT RAB/RB
2) First Rerun PRINT RAB.2,RB.2,RD.2

PLOT RAB.2/RB.2

3) Second Rerun PRINT RAB.3,RB.3,RD.3
PLOT RAB.3/RB.3
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Finally for a summary of all runs we must select a variable or variables
which are to be compared across all runs. One PRINT and PLOT card must
be specified for each variable to be compared as follows:

PLOT RAB.*

PRINT RD.*

PLOT RB.*
Any changes that you desire to make in a Rerun are made following the

RERUN statement as shown in the program below in Figure 5.10.

Figure 5.10
RERUN and COMPARATIVE PLOT and PRINT

FLOT STATEMENT OFTIONS (C) 1978 UND
¥ kX x % SO0URCE LISTING X X k X x

0001 TITLE PLOT STATEMENT OPTIONS

0002 % NARROW

0003 % CHECK

0004 x EULER

0005 L RAB.K=INTGRL(RE.JK-RD,JK)
0006 N RAB=150

0007 R RB.KL=RAB.KXFERT

0008 R RD.KL=RAR,KXDEAT

0009 C FERT=.12

0010 C DEAT=,04

0011 PARM DT=.08
0012 PARM STOP=S50
0013 FARM PLTPER=2
0014 FARM PRTPER=2
0013 FPRINT RABsRBEsRD
0016 PRINT RAB.2yRE.2yRD.2
0017 FPRINT RAB.3yRR.3)RD.3
0018 FRINT RD.X

0019 PLOT RAB(OsX)yREsRD
0020 PLOT RAR.2/RR.2

0021 PLOT RAB.3/RR,3

0022 PLOT RAR.X

0023 PLOT RByRD//RAR

0024 NOTE RABRIT DATA GRAFHE
0025 RERUN CHANGED DEATH RATE
0026 C DEAT=,08

0027 RERUN CHANGED DEATH RATE
0028 % RKINT

print program
print first rerun
print second rerun
comparative print on variable RD.
plot program
plot first rerun
plot second rerun .
comparative plot on variable RAB. ]
variable against variable plot in program
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Since both the PLOT and PRINT options have already been discussed
we shall consider here primarily the comparative PRINT and PLOT
statements. The following points should be kept in mind:

1) One PRINT and/or PLOT card must be placed for each
rerun. These PRINT and PLOT statements must be located
in the MAIN program before a RERUN statement is
encountered.

2) The PRINT statement on line 18 is a comparative PRINT in

that it will print out the value of the indicated variable
over the main program and all subsequent reruns, incorporating
the effect of the changes on that variable. The result is

as shown in Figure 5.11.

Figure 5.11
COMPARATIVE PRINT
FLOT STATEMENT OPTIONS (C) 1978 UND
TIME RO.1 RD, 2 RE, 3
0.000 &.00 12.000 12.000
2.000 7.04 12,998 12.999
4.000 8.25 14,079 14,082
6,000 ?.48 15.249 15.255
8.000 11.36 16,317 16,326
10.000 13.32 17.8%0 17.902
12,000 15.62 19.378 19.393
14,000 18,32 20.98%9 21.008
16,000 21.49 22.73% 22,758
18.000 25.21 24,425 24,4653
20.000 29 .57 26.672 26.706
22.000 34.48 28.8%90 28,931
24,000 40.48 31,292 31,340
246,000 47.71 33.894 33.951
28.000 55.96 36.713 346.778
30,000 65.64 39.785 39.841
32,000 74,98 43,072 43,140
34,000 ?0.30 44,4653 446,754

36,000 105.91 50.332 J0.648

38.000 124,22 D4.734 94.867
40.000 145,70 59.285 59.436

42,000 170.90 54,214 64,387

44.000 200,45 69554 49,749
46.000 235.11 75,337 75.558
48.000 275.74 81.401 81.852

S0.000  323.44 88.384 88,669
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3) Line 22:the COMPARATIVE PLOT statement for the
program, indicates that the variable RAB is to be
plotted on a graph with the value of the variable
calculated in the main program and in each of the
rerun programs. The COMPARATIVE PLOT diagram is

indicated in Figure 5.12.

Figure 5.12
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Again, the RERUN §1mp1y causes the entire program to be re-executed
but with the modified values as indicated after each rerun statement.
For instance line 26 in Figure 5.10 causes the program to be re-executed
but with the DEAT variable changed from a value of .04 to a value of .08.
Line 28 causes the Tast rerun to be executed with the Runge-Kutta Integration
procedure instead of the Euler procedure ( Line 4) which was used for the
first two program runs. A1l changes are permanent for successive reruns
unless subsequently modified. Thus DEAT had the value .08 for the
last two runs. As a caveat it is usually a good idea to change only
one variable at a time in successive reruns of a program, or it will
be unlikely that the true impact of a change can be determined.
Finally, we should note that if a comparative print or plot was not

required then lines 16 through 22 would not be required.

Version 1 of NDTRAN does not have the COMPARATIVE PRINT

or PLOT capability. Version 1 of NDTRAN in the RERUN mode

may change the constants, tables or DT size BUT MAY NOT CHANGE
INTEGRATION METHODS. Any changes in a RERUN remain for all

subsequent reruns of the program. Finally, only a single

PRINT or PLOT statement is required for the output from

the main program and subsequent reruns. Figure 5.10.1 below
shows an NDTRAN Version 1 program with a RERUN and the
PRINT and PLOT statement setup for the main program and RERUN.
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Figure 5.10.1
NDTRAN Version 1
RERUN Options

AR KOK KKK K S0 URCE LI &7 INIBG KK KR KK OR K

10001 % RERUN STATEMENT OFTIONS

LO0OZ  XNOBTATS

19003 XNARRUW

10004 XEULER

10003 L RAB,K=INTEGRAL (RE.JK~-KD0. JK)

10006 N RAB=1%0

16007 R KB.KL=RAB.NKFERT

10008 R RID.KL=RAEB.KXDEAT

10099 U FERT=,08s0DEAT=,04

10010 SPEC DT=,08s8TART=0sSTOF=100sFRIFER= 10sPLTPER=10
10011 NOTE RABBIT POFULATION

10012 FRINT ROSRErRAB

10013 NOTE RABBIT POFULATION PLOTL

10014 FLOT RD(0rBEOO)/RB(OrB"OO)/RﬁB(OrBJOO)

10015 RERUN THIS RUN CHANGES THE RABEIT FERTILITY RATE
10016 C FERT+.08




B.Functions

In modeling and simulation the role of FUNCTIONS is quite
important and as such are specified modifications to the normal
flow of information and/or goods and services and people. A
function in a simulation language (interpreter) like NDTRAN
might be:

1) predefined and part of the interpreter.
These types of FUNCTIONS include PULSE,
NOISE, NORMRN, STEP,SINE, COSINE, and
the 1ike;

2) defined by the user from an arbitrary graph and
implemented by the special function called
TABLE.

A FUNCTION may appear in ali equation types except level equations.

Initial values may be computed using functions so Tong as onty
constants and other initial values are used as arguments. Most
frequently, however, functions appear in AUXILIARY or RATE

equations; always appearing on the right side of the equal sign.

1) PULSE Function
A Pulse function is theoretically designed to excite a given
system at a specific point or points in time with a defined
amplitude. It can be used in other ways, The form of the Pu]se

Function is as follows:

5.23
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PULSE(VAR1,VAR2,VAR3,VAR4)

VAR] - the height of the pulse function;

VARZ - the width of the pulse function expressed as
DT units of time for the model;

VAR3 - the period of the model in which the pulse
function is first activated.

VAR - the interval of time between puises. In the

example shown in Figure 5.13 , VAR4 was

set to five to indicate that the puise

would reactivated every sixth period.
The arguments may be input to the pulse either as constants or as
variables.

Let us say that you have a modeling problem where it is necessary

to inhibit the active entry of one variable in the model until
several DT time periods have elapsed, and to have that variable enter
at an initial value other than zero. Figure 5.13 shows such an example
program. The output is printed in Figures 5.14 and 5.15. In this
example pulse is activated after five periods, remains inactive for
five more periods then is activated again. VAR4 would be set to zero

if the pulse were to be activated only one time.
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Figure 5.13
Pulse Function
Multiple Reactions

-

FAGE 1 A PROGRAM TO TEST THE PULSE FUNCTION (C) 1978 UND
X K ¥ x x SOURCE LISTING X % x x %

0001 TITLE A PROGRAM TO TEST THE PULSE FUNCTION
0002 % EULER

0003 x NARROW

0004 x NOSTATS

0005 L LEVEL.K=INTGRL(R.JK)

0006 N LEVEL=0 :

0007 R R.KL=LEVEL .K¥,06+PULSE(4s155+5)
0008 PARM DT=1

0009 FARM START=0

0010 PARM STOFP=20

0011 PARM PLTPER=1

0012 PARM PRTPER=1

0013 NOTE DELAYED LEVEL VARIABLE

0014 PRINT LEVEL

Q015 NOTE DELAYED LEVEL VARIABLE

0016 PLOT LEVEL

Figure 5.14
Pulse Function
Printed Qutput

TIME LEVEL

0.000 0.000
1.000 0.000
2.000 0.000
3.000 0.000
4,000 0.000
3.000 0.000
6.000 4.000
7.000 4.240
8.000 4,494
?.000 4,764
10.000 3.050
11.000 5.353
12.000 ?.674

13.000 10,258
14,000 10.870
15.000 11.522
16.000 12.213
17.000 12.944
18.000 17.723
19.000 18.786
20,000 19,913
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Figure 5,15
Pulse Function
Plotted Qutput

A PROGRAM TO TEST THE PULSE FUNCTION DELAYED L (C) 1978 UND
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2) CLIP Function
The Clip function can be used to:
a) limit the value of a variable ; or
b) provide a method for shifting variable values.
The general form of the Clip Function is:
CLIP(VALU2,VALU1,CNTL,TEST)
VALUZ - the value assigned to the dependent variable
if the value of the CNTL variable is greater than
or equal to the value of the TEST variable.
VALUT - the value assigned to the.dependent variable

if the value of the CNTL variable.is Tess than'
the value of the TEST variable.

N
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CNTL - the control variable. It is common to have
the control variable be the TIME variable.
The Clip function may be controlled by
a variable reflecting magnitude rather than
time over a model run.

TEST - the reference or comparison variable to
determine whether VALU1 or VALUZ will be
used.

VALUT and VALUZ may be table variables or constants. The next
illustrations show the actual use of a Clip function in a given program.
The Clip function becomes active for both runs when the tenth

DT unit is encountered, that is after nine units have elapsed. In

the first run no change occurs. In the second example a change is

noted because VALU1 no longer is equal to VALUZ2.

Figure 5.16
Clip Function

THE USE OF THE CLIP FUNCTION (L) 1978 UND
X X XK X X S0OURCE LISTING Kk X x X

0001 TITLE THE USE OF THE CLIF FUNCTION

0002 X EULER

0003 X NARROMW

0004 X CHECK

0005 X NOSTATS

0006 L LEVEL.K=INTGRL(RATE.JK)
0007 N LEVEL=100

0008 R RATE.KL=LEVEL .KX¥FERT.K
0009 A FERT.K=CLIP(VALU1»VALU2,TIME.KrYEAR)
0010 ©C VALU1=,10

0011 C VALU2=,10

0012 C YEAR=10

0013 PARM DT=1

0014 FARM START=0

00135 FARM STOP=20

0014 PARM PRTPER=1

0017 FARM PLTPER=1

0018 FRINT LEVELYFERT
0019 PRINT LEVEL.2sFERT.2
0020 PRINT LEVEL.xX

0021 FLOT LEVEL/FERT

0022 PLOT LEVEL.,2=L/FERT.2=F
0023 PLOT LEVEL.Xx

0024 RERUN

0025 C VALU1=.01




Figure 5.17

Clip Function and RERUN

THE USE OF THE CLIP FUNCTION

TIME LEVEL FERT
E+00 E+00 E-03
0.000 100.00 100.00
1.000 110.00 100.00
2.000 121.00 100.00
3.000 133.10 100.00
4.000 146.41 100.00
9.000 161.05 160.00
6,000 177.14 100.00
7+000 194,87 . 100.00
8.000 214,36 100.00
?.000 235.79 100.00
10.000 299.37 100.00
11.000 285.31 100,00
12,000 313.84 100.00
13.000 345,23 100.00
14,000 379.75 100.00
15.000 417.72 100.00
16.000 459.350 100.00
17.000 305.45 100.00
18.000 555.99 100.00
19.000 611.5% 100,00
20.000 672.73 100.00
THE USE OF THE CLIF FUNCTION
TIME LEVEL.2 FERT.2
E+00 E+00 E-03
0.000 100.00 100.00
1.000 110.00 100.00
2.000 121.00 100.00
3.000 133.10 100.00
4,000 146.41 100.00
5.000 161.05 100.00
4+ 000 177.16 100.00
7.000 194.87 100.00
8.000 214,36 100.00
24000 235 é; 100,00
10.000 259, 10.00
11.000 261,97 10.00
12,000 264,59 10.00
13.000 267 .23 10.00
14,000 269.91 10.00
15.000 272,60 10.00
15.000 275.33 10.00
17.000 278.08 10.00
18.000 280.87 10.00
19.000 283.487 10.00
20.000 286,51 10.00

(MAIN PROGRAM RUN)

PART A
Clip Function

5.28

(CY 1978 UNRD

No change in variables

VALUT = VALU2

(RERUN)

PART B
Clip Function

(C) 1978 UND

Variable Changes

VALUT # VALUZ
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Figure 5.18
Clip Function and RERUN

THE USE OF fHE CLIP FUNCTION {C) 1978 UND
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3. STEP Function
The form of the Step function is:
STEP(HT,PYEAR)
HT - the magnitude or height of the step

PYEAR ~ the value of the TIME variable at which
the step becomes activated.

Schematically, a STEP function would look as shown in figure 5.19,
If HT were equal to 1, then the value of the Step would be 1.

The second argument shows the time at which the Step function would
be activated. At all other (previous)times the Step function has a

vaiue of zero.

Figure 5.19
Step Function

value

value = ( value = |

 § )
PYEAR timc
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In NDTRAN the Steé function may be used to keep a given level
initialized at some pré—determined level until some given time instant
at which the level variable is activated and will begin to change.
When the Step function is incorporated into a program involving a
first order negative feedback loop, the program is shown in

Figure 5.20 and the output in Figures 5.21 and 5.22.

Figure 5.20
Step Function Program

USE OF THE STEP FUNCTION (C) 1978 UND
X X ¥ x X% SOURTCE LISTING X k X x %
0001 TITLE USE OF THE STEF FUNCTION

0002 x EULER

0003 x CHECK

0004 % NARROW

0003 X% NOSTATS

0006 L LEVEL .K=INTGRL(RATE.JK)
0007 N LEVEL=100

0008 R RATE.KL=(CON.K) (DL-LEVEL.K)/ADJTM
0009 A CONJK=STEP(HT,FYEAR)
0010 C PYEAR=10

0011 C HT=1

0012 C ADJTM=S

0013 C DL=500

0014 FARM DT=1

0015 FARM START=0

0016 PARM STOP=20

0017 PARM PRTPER=1

0018 FARM PLTPER=1

0019 NOTE OUTPUT OF STEP FUNCTION
0020 PRINT CONsLEVEL,DL

0021 PLOT CON/LEVEL/DL




USE OF THE STEF FUNCTION - QUTFUT OF STEF FUNCTI

TIME

0.000
1.000
2.000
3.000
4,000
5.000
4.000
7.000
8.000
9.000
10.000
11.000
12.000
13.000
14.000
15.0060
16.000
17,000
18,000
19.000
20.000

CON

0.0000
¢.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.,0000
0.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1,0000
1.0000
1.0000
1.0000

1.0000

STEP Function Program:

LEVEL

100.00
100.00
100.00
100.00
100.00
100.00
100,00
100.00
100,00
100,00
100.00
180.00
244,00
295,20
3346.16
368.93
395.14
416.11
432,89
444,31
457.05

Figure 5.21
Printed Output

Bl

500.00
500.00
300.00
500.00
500.00
900.00
200.00
500.00
300.00
300.00
500.00
500.00
500.00
500,00
500.00
3500.00
500.00
500.00
300.00
500,00
500.00

0.32

(C) 1978 UND




m3a -

C

0

10

C=CON

0
100

480

L

USE OF

*

.

+

THE STEF FUNCTION - OUTFUT OF STEF FUNCTI

L=LEVEL

+ 25
190
450

-
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Figure 5.22
STEP Function Program
Plotted OQutput
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shown in Figure 5.20. The black line indicated by the arrows
shows that the variable CON remains at zero until the 10th

year at which point it takes the value of 1.
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Figure 5.22 shows the plot from the Step function program

As long as the

CcL

variable CON is zero, the level variable does not change. In the 10th year

when the variable CON has a pesitive value the RATE equation becomes

positive and the level variable begins to increase.
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C. TABLE FUNCTIONS

NDTRAN cannot handle graphic input directly. But if the graphic
input is converted to a table ( table form) where each point is defined
by a pair of coordinates, then NDTRAN can handle such input. Figure
5.23 illustrates a table with X and Y coordinates.

Figure 5.23
TABLE Values

>
-

100
96
90
86
80
75
60
50-

WO ~N & 0 a2 W -

In NDTRAN, the left side of the table values or the X values are
the independent or control values. The X values must be of reguiar
interval and with a specific starting and ending point. The right
side of Y values , are the dependent values, which may or may
not have regular intervals. In fact, they may be increasing, decreasing
or irregular. Hence the above table is input to the NDTRAN program

as a TABLE ARRAY,
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1) TABHL Function

There are several forms of Table functions in NDTRAN. One widely
used form is the TABHL function shown in the context of an auxiliary
equation as follows:

A Y.K=TABHL(NAME ,X.K,LOW,HIGH,CHANGE)

T NAME=100,96,90,86,80,75,60,50

The auxiliary function provides the name of the variable that receives
a value dependent on the value of the independent variable. The variable
in this case being shown as Y. Following the "=" sign, the first
variable of the argument 1ist inside the parentheses is the NAME of the
table representing the "Y" values shown on Figure 5.23. The second variable
or the independent variable, represents the "X" values. The independent
variable will have a LOW value, a HIGH value, and an increment, CHANGE.
The LOW and the HIGH define a range for the independent variable, associating
the first value of the table with LOW, and the last value in the table with

HIGH. Looking back to the table shown on Figure 5.23 the following would

be seen:
X
HIGH 8
LOW 1
CHANGE 1

TABHL, an acronym for Table-High-Low has two characteristics. First,
it uses a linear interpolation between points within the range of the table.

For values of the independent variable less than LOW, TABHL returns the first
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value of the table, that is, the value associated with LOW. Similarly,
for independent variable values greater than HIGH, TABHL returns the
last value of the table, the value associated with HIGH.

This may be explained by using the table in Figure 5.23as an
example. For instance, if the program generated an independent variable
value of 3.75, then the Y value that would be used would be 89, 3/4 of
the way between the value of 90 and the value of 86 on the table. The
basis would be a linear interpolation of the Y values, based on the
X wvalue.

Now, what would happen, given the table on Figure 5.23 if the
program should generate a control or X value that was either greater
than 8 or less than 1 . If the independent value generated were less
than 1 , say it were -3, the generated Y value would still be 100.

Likewise for X values greater than 8, Y would always be 50.
2) Other TABLE Functions

The general form of the other table functions is slightly different.
A ENDPOINT.K

TABND(TAB, INDEP.K,LOW,HIGH)

A FIRSTLST.K = TABFL(TAB,INDEP.K,LOW,HIGH)

A REGULAR.K

TABLE(TAB,INDEP.K,LOW,HIGH)
TAB is the name of the table array to be used in the function; INDEP
is the name of the independent variable; LOW and HIGH define the range of

the independent variable and fit it to the table. These table functions
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all are characterized by fourth-order curve fitting techniques

for establishing the points within the existing range of the table.
TABHL function is the only function using linear interpoiation.
Each of the table functions differs somewhat in the manner in

which end-points beyond the range of the table are handled.

3) Examples
The graph in Figure 5.26 , derived from the program in Figure

5.25 1llustrates the difference between linear interpolation
and a fourth-order curve fit for establishing points within the existing
range of the table. The function TABHL uses the linear interpolation
and all of the other table functions use a fourth-order curve fit
technique. In Figure 5.26 the + symbol is used to show the
fourth-order curve fit function and the * symbol is used to show
the linear interpolation. The table functions used here are:

R TEST5.KL=TABLE(TAB2,TIME.K,0,6)

R TEST6.k1=TABHL(TAB2,TIME.K,0,6,2)

T TAB2=1,2,1,2

Schematically the table would look as shown in Figure 5.24.

Figure 5.24
Table Function (array)

TIME.k DEPENDENT VARIABLE
0 ]
2 2
4 1
6 2

Now, the relevant question is, if TIME is 1.1 instead of 1 or 2;
what is the value produced for TIME=1.1 using the two different

table functions. Figure 5.25 shows the program and Figure 5.26, the output.




X X x

0001
0002
0003
0004
0005
0004
0007
0008
0009
0010
0011
0012
0013
0014
0015

Figure 5.25
Table Functions:
Linear Interpolation
and
Fourth-Crder Curve Fit

FROGRAM TO TEST TABLES
x x SOURCE LISTING

TITLE PROGRAM TO TEST TABLES
EULER

CHECK

NARROW

NOSTATS

LEVEL . K=INTGRL (RATE . JK)
RATE . KL=LEVEL ,K

LEVEL=0

HL . K=TABHL (TAR1» TIME.Ks1910+1)
LE.K=TABLE(TAB1»TIME.Ks1,10)
TAB1=1+2s1,2

FARM DT=,2

PARM STOP=10

PARM PLTPER=,2

PLOT HL=4(0»3),LE=x

=HOBZOr % % %%

X X X x x

(C» 1978 UND

It is the relationships of the points within the table range that

are of importance. Notice the TABHL values are calculated on the

basis of a straight 1ine or linear interpolation. The TABLE

values are calculated on the basis of the fourth-order curve fit.

The user may decide which method is best suited for his or her application.
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The next question concerns the action of the various table
functions outside of the range of the table itself. Figure 5.27 shows
the program used to demonstrate this. The tabled data used in this

demonstration is shown below:

TIME.K TAB]

-5
0
1
8
27

~SNOO W

Remember, in this test we wish to indicate the performance of the table
functions outside of the 1imits of the table or form values of

TIME 1ess than 3 and greater than 7. Four table functions are used

and the plot symbol for each is shown below:

Table Function Plot Symbo}
TABHL H
TABLE L
TABFL F
TABND N

The extrapolation beyond the 1imits or range of the table is as follows:

TABHL - a horizontal line based on the first and last value
of the table;

TABLE - an extrapoliation from the four points closest to the
respective end points of the table;

TABFL - a straight 1ine based on the first point of the table
and the last point;

TABND - a straight line (linear interpolation) based on the

first two points of the table and the last two.

The extrapolation beyond the table range is for time periods ¢ - 3 and

from 7 - 10 indicated by the heavy dashed 1ine on Figure 5.28.
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Figure 5.27
Table Function Behavior
Extrapolation Beyond
Table Limits

FAGE 1} FROGRAM TO TEST TARLES (C) 1978 UND
X X X X % SOURCE LISTING X ¥ Kk % x

0001 TITLE PROGRAM TO TEST TAELES

0002 % EULER

0003 ¥ CHECK

0004 ¥ NARROW

0005 % NOSTATS

00046 L LEVEL.K=INTGRL(RATE.,JK)
0007 R RATE.KL=LEVEL .K

0008 N LEVEL=0

000% S HL . K=TABHL (TAB1 s TIME .Ks 2,85 2)
0010 S LE . K=TARLE(TAR1>TIME.K»2,8)
0011 s FL.K=TABRFL(TAB1yTIME.Ky2s8)
0012 ¢ ND.K=TARND{ TAR1 y TIME .K»2,8)
0013 T TAR1=1,2,1,2

0014 PARM DT=.2

0015 FARM 5TOP=10

0016 FPARM PLTPER=.2

0017 FLOT HL(.S5+2.5)sLEsFLND
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Figure 5.28
Table Function Behavior

Extrapolation Beyond

Table Limits
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Figure 5.27.1
Table Function Behavior
Extrapolation Beyond
Table Limits

AR KKK K KOOk X 504 RCE LIS TINDG G CAKOK K ¥ K R %

10001 ¥ THIS FROGRAM SHOWS THE USE OF THE TABLE FURNCTION
10002  XNOSTATS

10003 %EULER

10004  ¥NARROW

LGOOE ¥NOWARN

10006 LEV.K=INTEGRAL (TEST1..JK)

10007 LEV=]

10009 CTESTL oKL=LEV . KXAUX K

1000y AUX K=TABND{TABL» TIME . K+ 3+ 7)

10010 AUL +K=TARHL (TABLy TIME.Ksy3s751)
10011 AU s R=TABFL(TABLy TIME Ky 3,7)

10012 T TARL=-5/0/1/8/27

10013 SFEC DT=.1sSTART=0,8TOF=10+sPLTFER=,25
10014  FLOT AUX=#sAUl=%,AU2=+

Note that the TABLE function cannot be used in this kind of test.

In NDTRAN Version 1, the TABLE Function inhibits execution

outside of the tabie range. Otherwise the behavior characteristics

are the same as NDTRAN Version 2.




D) Summary

A number of commonly used functions are available on NDTRAN.

5.44

Their use and definitions are similar to those previously explained.

ATl presently available functions for NDTRAN versions 1 and 2 are

shown in the table below.
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Table 5.1
NDTRAN FUNCTIDNS

NAME FORM PROCEDURE

1. ABS ... ABS{VAR1) Takes the absolute value of the arqument.

2. CLIP ...CLIP(VAR1,VARZ ,VAR3,VAR4 )} Uses the value of VAR1 if VAR3 is greater
than or equal to VAR4, otherwise uses VARZ.

3. cos ...COS(VAR) Generates a cosine transformation of VAR

4, DELAY available as procedures See Chapter 4, pages 43 ff.

5. EXP ...EXP(VARL) EXP(VAR1) means eYARl  where e s the
base of the natural logarithm.

6. LOG ...LOG(VAR1} Means, take the natural log of the value
of VAR1

7. MAX .. .MAX{VAR1,VAR?) Selects the greater of the values of VAR]
and VAR2.

8. MIN .. .MIN(VAR1,VAR?) Selects the lesser of the values of VAR1
and VARZ.

9. NOISE .. .NOISE(SEED) Generates a (pseudo) random number set uniformly

distributed between 0 and 1. 'Seed' here and
in NORMRN is any 5 digit positive number.

10. NORMRN .. .NORMRN(SEED,VAR1 ,VAR?) Generates random numbers normally distributed
’ with a specified mean and Standard Deviation,
where VAR] is the Mean and VAR2 is the
Standard Deviation.
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11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

PULSE

RAMP

SAMPLE

SIN

SORT

STEP

SWITCH

TABHL

TABLE

TABFL

TABND

PULSE(VAR1,VARZ ,VAR3,VARS)

RAMP(VAR1,VAR2)

SIN{VAR1)

SORT(VAR1)

STEP(VAR1,VAR?)
SWITCH(VARL,VARZ,VAR3)

TABHL (NAME , INDEP ,LOW ,HIGH , CHANGE )
TABLE(NAME, INDEP,LOW,HIGH)

TABFL(NAME , INDEP,LOW,HIGH)

TABND(NAME , INDEP,LOW ,HIGH)

Output a pulse of height VAR1, width VARZ,
starting at time=VAR3 with an interval of
time between pulses of VAR4,

Produces a variable of slope=VAR7 beginning
with value zero at time=VAR2.

Selects a sample at uniformly spaced sample
intervals,

mm:mﬂmﬁmm a sinusoid transformation .

Generates the square root of the value of
variable shown as the argument.

Produces a STEP disturbance of height VAR
at time VARZ,

Selects VAR1 if VAR3 is positive. Otherwise
selects VARZ.

Performs a linear interpolation between points
in the table,LOW and HIGH used for values outside the range.

Performs a fourth order curve fit for points
within the table; execution terminates outside the range.

Performs a fourth order curve fit for points within
the table; linear extrapolation based on first and
last values of table for values outside the rancge.

Performs a fourth order curve fit for points within
the table; linear extrapolation based on two points
at either end of the table for values outside the range.
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Chapter 6
Integration Methods in NDTRAN

A} Introduction

Most problems in continuous simulation techniques involve feedback,
i.e. the state variables themselves directly effect the rates at which
the state variables change. Such systems imply exponential change.
To state it simply, the state variables {levels) themselves at a given
time are an important element in the determination of the rate of change,
of the levels over the coming time period (DT).

The most fundamental feedback structure in dynamic simulation can

be shown in the flow diagram of Figure 6.1

Figure 6.1
Feedback Structure

LEVEL
Source

CONSTANT
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The level itself is an important determinant of the rate of change
of the level for the coming period. The constant determines the
slope of the curve at any time instant. Theoretically, the values
for the state variable that we are interested in would be the area
under the curve, as shown in Figure 6.2.*

di Figure 6.2
dt Integration Concept

51-—-——*

time

For complete accuracy we should add to the measurement of the level variable
at some starting time T; the total area under the curve for as many time
periods (DT's) as we wish to run the simulation following T;. However, once
we come to a computer numerical technique for computing or calculating the
area under the curve, we find that the area can only be approximated. The
field of numerical analysis has provided a variety of methods for doing

this.  Each of the methods has a set of properties which make it desirable

* In other words, the concept of feedback and the basic structure of our
model is capable of being solved using integration.
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or undesirable for the solution to a particular integration problem.
Intuitively, the object of any integration method is to approximate
as closely as possible the actual curve that represents the increase or
decrease in the value of a Tevel variable. Each of the possible methods
that have been devised have some "error" or difference between the actual
value of the function and the calculated value. 1n Figure 6.3, the actual
value of the level variable is shown as the solid 1ine, with two possibie

variations (from the actual) of the calculated value of the level variable.

Figure 6.3
Error Concept In Integration

i 2 3 4 5 time
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As shown in Figure 6.3 any methods (numerical) that we choose

will vary from the actual. In case 1, the calculated value differs
from the actual value by being understated a considerable amount.

In case 2 the calcualted value closely approximates the actual value.
Each of these cases have requirements as to necessary information and
the computer time necessary to calculate the values of the level
variables. Further, depending on the integration method chosen, the
step size must be varied for accuracy, which will have an affect on

the "roundoff" error.

B) Methods of Integration Used
1) Euler Integration

Euler's method for integration is one of the oldest, simplest, and
best known methods for integrating. The method has a relatively large
formula error and is often unstable. For this reason, it is usually

undesirable except in instances where summation is actualiy preferred

over integration as in simulations involving bank interest problems.

To compute the value of the next level using the Euler Method
requires the past value of the level and the time rate of change of the
level based on that past value. There is relatively small computer time
cost since the time rate of change of the level from the previous time
need be computed only one time. The error is proportional to DT2.

2} Runge-Kutta Integration

The Runge-Kutta method is usually applied to engineering and/or physics
problems where a high degree of accuracy is required. Perhaps as important,

it is desirable where higher order derivates are non-zero or non-continuous.
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This method requires the past level value and the value of the time
rate of change for four different values of the level itself and time.
The method (fourth order) essentially divides each step size into four
parts and calculates the values for four different values of the level
itself. The cost is relatively high, usually being four times that of
the Euter method for a given step size, since the rates must be computed
four times for each integration step. The method is highly accurate
and stable with error terms proportional to DT>,

3} Adams Bashforth Predictor Integration

This method is very desirable and very efficient, particularly where
coantinous functions are concerned. Since the rates are assumed to be
continuous, past rate values are used to compute present level values.
This method takes three time periods to dissipate resulting transients
for non-continuous rates. It produces accurate results and is used in
engineering and physics problems as well as for many continuous function
problems.

This method requires the past level value and the time rate of
change of the level at the past four time periods. The computer time
cost is relatively sma11 as the past rate values are saved from the
previous steps, and for each given step the rate is calculated only one
time. The method does require a Runge-Kutta start since initially the
required past four rate values are not available. For all continous
equations the cost is about equal to the Euler Method and the accuracy

is about equal to the Runge-Kutta method.
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C) Tests of Integration Methods

While there are many tests that can be devised, we have chosen
to subject the integration methods in NDTRAN (versions 1 and 2) to

three:

1) Accuracy - having the interpreter integrate

polynomial curves with known solutions

including:
RATE = d1/dt

R=10

R=1

R=2%* time
R=3~* time2
R =4+ time

2) tracking - the property of the integration routine

to remain close (over time) to the actual
solution; in this case, first order
growth and decline curves.
3) accuracy and

stability

of cyclic

phenomena - the integration methods of the interpreter
were used to integrate RLC circuits with

known solutions.

There is a difference between NDTRAN version 1 and NDTRAN2 that
ought to be noted. In NDTRAN version 1 the TIME variable was calculated

( rather than integrated). In developing NDTRAN2 a number of users
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contacted us about this point. In discussing this point with mathematicians
familiar with this type of problem we came to the conclusion that if
all of the variables in a model were integrated, but the TIME variable
were calculated a transient error could develop. This problem could

be corrected if in NDTRAN2 we converted the TIME variable from a
calculation to an integration. We have done this. Since NDTRAN and
NDTRANZ are both double precision interpreters ( on all systems

with sufficient core to handle double-precision and remain within the
available FORTRAN batch partition), there appears to be a high degree
of accuracy in all calculations in NDTRAN and NDTRANZ. Comparisons
between the output of NDTRAN and NDTRANZ on these tests do indicate
some differences. As of this point we believe the differences are
because of the changes indicated in NDTRANZ. We are still considering

these questions of accuracy.
1) Accuracy

The first test of accuracy was carried out using known polynomial
curves, In this test the important point that we considered was the
magnitude of the relative error. We would expect that Euler method would
accurately integrate zero and constant curves, and that Runge-Kutta
and Adams-bashforth would integrate through third order curves.

Figure 6.4 shows the approach used for the integration of polynomial
curves through order 5. It should be noted that the relative error for
Euler was significant after the constant curve and for Runge-Kutta and

Adams-Bashforth after the fifth order curves.




Integrate:
Integrate:
Integrate:
Integrate:

Integrate:

NOTE
NOTE
NOTE

Figure 6.4
Accuracy Integration Tests

Y' = 0, Y{0)=0, Solution:
Y'=1, Y{0)=0 , Solution:
Y'=2T, Y(0)=0, Solution:
Y'=37**2,¥(0)=0, Solution:

Y'=4T**3,y(0)=0, Solution:

INTEGRATE: Y'=4T**3, Y(0)=0,

L Y5=INTGRL(DY5)

R DY5=4*TIME**3

N Y5=0

S ACTLYS=TIME**4

S ABSR5=ABS(ACTLY5-Y5)
S RELR5=ABSR5/ACTLY5

Y=0;
Y=T;
Y=T**2,
Y=T**3;

Y=T*44;

6.8

Y1
Y2
Y3
Y4

Y5

SOLUTION: Y=T**4

As noted, the relative errors for the results of the integfations

using the three integration methods became significant for Euler after

the constant curve, and became significant for the other methods after

the fifth order curve.

2) Tracking

The second test is the tracking test. Figure 6.5 shows the program

segment indicating the test. The program is appropriately modified

for the integration methods by changing the control option * EULER,

* RKINT, * ABINT

. In this test the absolute error is important as

the relative error becomes meaningless as the solution approaches zero.




Figure 6.5

6.9

Integration: First Order Growth and

Decline Curves:; DT=.1

¥ K Xk X X S0URCE LISTING

0001
0002
0003
0004
005
0006
Q007
0008
Q009
0010
0011
0012
0013
Q014
0015
0014
0017
0018
0019
0020

TITLE NDTRAN TRACKING TEST
NOWARN

NOCHECK

NOSTATS

EULER

A=-1

Y=1

Oy .Kl.=A%Y .K

Y+ K=INTGRL (LY +.JK)

FARM DT=,1

FARM START=0

FARM STOF=10

PARM PRTFER=1

S5 ACTUAL +K=EXF{AXTIME .K)

S ABSERR=ABRS(ACTUAL .K-Y.K)

8 RELERR.K=ABRSERR.K/ACTUAL K
FRINT Ys»ARSERR»RELERR»ACTUAL
FRINT Y.2+ABSERR.2'RELERR.2+ACTUAL .2
RERLIN

£ a=1

T A& 0 % 3% 95 %

XK X % X

Figures 6.6, 6.7 and 6.8 show the results of the execution testing

using the three integration methods. In these figures, the variable

Y

is the integrated or calculated variable as shown in line 9 of

the program in Figure 6.5. Variables ABSERR, RELERR AND ACTUAL are,

respectively, the absolute error, the relative error and the

actual or calculated value as shown in lines 14 - 16 of the program.




EULER Integration:

TIME
E+OO

0.000
1.000
2+000
3.000
4,000
3.000
46.000
7.+.000
8.000
?.000
10,000

TIME
E+00

0.000
1.000
2.000
3.000
4.000
9000
6.000
74000
8.000
?.000
10,000

Figure 6.6

Part A: Growth Curve

Y.2 A
E+03

0.001
0.003
0.007
0.017
0,045
0.117
0,304
0.7%90
2,048
S5.313
13.781

Part B:

Y
E+00

1.0000
0.3487
0.1216
0.0424
0.0148
0.0052
0.0018
0.0006
0.0002
0.0001
0.0000

BRSERR.2 RELERE,?
E+03 E~03
0.0000 0,00
0.0001 45.82
0.0007 89.53
0.0024 131.25
0.0093 171.05
0.0310 209.03
0.098y 245,27
0.:30469 279.84
093248 312.84
2.7901 344,32
8,2459 274,34
Decline Curve
ABSERR RELERR
E-03 E-~-03
0.000 0.00
19.201 52.19
13.759 101.66
7.396 148.55
3,535 192.99
1.584 235.11
0.682 275.03
0.285 312.87
0.117 348.74
0.047 382.73
0.01¢ 414,95

First Order Curves.

ACTUAL, 2
E+03

0.001
0.003
0.007
Q.020
0.055
0.148
G.403
1.097
2+981
B8.103

22.026

ACTUAL
E+00

1.0000
0.3479
0.1353
0.0498
0.0183
0.0067
0.0025
0.0009
0.0003
0.0001

0.000G0




Figure 6.7 '
Runge-Kutta Integration: First Order Curves
Tracking

Part A: Growth Curve

TIME Y2 ARSERR.2 RELERRKR.2 ACTUAL.Z2
E4+0D E+00 E-~-03 E~Q& E+00
0,000 1 .00 0.0000 1
1.000 3 0.00 0.7448 3
2.000 7 0,01 1.5334 7
3.000 20 0.0% 2.3003 20
4,000 b 0,17 3.0671 59
5.000 148 0.57 3.833¢% 148
4,000 403 1.86 4.46007 403
7.000 1097 5.89 .3475 1097
8.000 2981 18,29 6.1342 29981
2.000 8103 55,92 &.9010 8103
10.000 22026 148,89 7.6678 22024
Part B: Decline Curve

TIME Y ARSERR RELERR AQTUAL
E+00 E+00 E-0% E£E-06 E+0Q0
0.000 1.0000 0.00 00,0000 1.0000

1.000 0.3679 333.24 0.9058 0.34679
2,000 0.1353 2435.19 1.8117 0.1353

3.000 0.0498 135.30 2.7175 0.0498

4,000 0.0183 66.36 3.6234 ¢.0183
5.000 0.0067 30.52 4.5292 0.00867
6.+000 0.0025 13.47 5.4351 O.gggg
7+000 Q.000% 5.78 6.3409 0.

8.000 0.0003 2,43 7.2448 0,0003
?.000 0.0001 1.01 8.15246 0. 0001

10,000 0.0000 0.41 ?.,0585 0.0000




Figure . 6.8
Adams-Bashforth Integration:
First Order Curves Tracking

Part A: Growth Curve

TIME Y2 ABSERR.2 RELERR.2 ACTUAL .2
E+00 E+00 E+00 E-06 E+00

0.000 1 0.0000 Q.00 1

1.000 3 0.0001 21.11 3
2+000 7 0.0004 H0.98 7
3,000 20 00,0018 80.84 20
4,000 w3 0.Q060 110.73 S5
5.000 148 00,0209 140.460 148
4.000 403 0.0488 170.47 403
7.000 1094 0.2197 200.33 1097
8.000 2980 0.468462 230.20 2981
?.000 8101 2.,1073 260.07 8103
10.000 22020 56,3862 289,93 22024

Part B: Decline Curve

TIME Y ARSERR RELERR ACTLUAL
E+00 £E+00 E-06 E~06 E+00
0.000 1.0000 0.000 0.00 1.0000
1.000 0.38679 10.6164 28.84 0.3467%
2.000 0.1353 ?.421% 69.61 0.1353
3.000 0.0498 94495 110,37 0.0498
4,000 0.0183 24768 151.14 0.0183
3.000 0.0067 1.293 191,90 0.00467
6,000 0.0025 0.577 232,47 0.0025
7.000 0.000% 0.249 273.44 0.,0009
8.000 0.0003 0.105 314,21 0.0003
?.000 0.0001 0.044 354.98 0.0001

10.000 0.0000 0.018 395.76 0.0000
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3) Cyclic Phenomena

The final step of the integration methods is the integration of

cyclic phenomena to test the accuracy and stability of the methods.

The program is shown in Figure 6.9, representing a series RLC circuit

shown in Figure 6.10.in NDTRAN. Figures 6.11, 6.12 and 6.13 show the

results of the program execution using the three integration methods.

Figure 6.9
Series RLC Circuit
Program DT=,02

X ¥ X ¥ % SO0OURTCE LISTING X K X ¥ %

0001 TITLE STEF RESFONSE OF RLC CIRCUTT

0002 X NOSTATS

0003 *x CHECK

0004 X EULER

000G N VC=0

0008 N IL=0

0007 L VC.K=INTGRL(ILR.JK)

0008 L IL.K=INTGRL{(VIR..K)

0009 R ILR.KL=IL.K/C

0010 R VIRWKL=10/L-REIL .K/L~UC,K/L

0011 C C=4,94-2

0012 € R=1

0014 C A=1

0015 C B=4.2832853

0016 § UCS.NﬂiO*(1+EXP("A*TIHE.K)*(—A/B*SIN(B*TIHE.N)
X ~COS(EXTIME.KY))

0017 PARM DT=.02

0018 FARM START=1

001? FARM STOF=3

0020 FARM PRTFER=.1

0021 5 ARSERR.K=VCS,K-VC.K

0022 g RELERR.K=ARS (ARSERR .K) /VCS. K

0023 FRINT VC»VCSARSERR » RELERR
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Input Capacitor
VYol tage Voltage
v ({9)) vV{C}

Figure 6.10
Step Response of Series RLC Circuit

| ohm

.5 heneiés:
-0494 farads
i0 volt step

<Qr>o
Wuanon




STEF RESPONSE OF SERIES RLC CIRCUIT

TIME
E+00

0.0000
0.,1000
0.2000
00,3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.2000
1.0000
1.1000
1,.2000
1.3000
1.4000
1.5000
1.46000
1,7000
1.8000
1.9000
2,0000

Ve
E+00

0.000
1.543
6.070
11.551
15,831
17.447
16.098
12,624
8.3465
9.502
4.447
J.616
8.273
11.273
13.457
14,102
13.142
11.117
8.905
7.353
6.986

ves
E+00

0.000
1.833
6.231
11.168
14,794
14.045
14,953
12.286
?.292
7.091
6.321
6.996
8.613
10.430
11.764
12,231
11.822
10.841
?.739
8.930
8.647

Figure 6.11
Series RLC Circuit
Euler Integration

0T=.02

ARSERR
E+00

0.0000
0.2902
0.14608
"003830
~1.0347
-1 03814
~1.1444
~-0.3381
0.7249
1.5891
1.8541
1.3793
0.3408
~0.8429
-1 06924
""1 08706
~1.3193
-0.2758
0.8347
1.5771
1.4809

RELERR
E-03

0.00
138.30
25.81
34.30
69.93
85.99
76.53
27.52
78,23
224,09
293,32
197.17
39.57
80.82
143.8¢4
152,93
111.40
25.44
83.70
174.61
194.39

(C) 1978 UND



STEP RESPONSE OF SERIES RLC CIRCUIT

TIME
E+00

0.0000
0.1000
Q. 2000
0.3000
0.4000
0.35000
0.46000
0.7000
0.8000
0.9000
1.,0000
1.1000
1.2000
1.3000
1.4000
1.5000
1.6000
1.7000
1.8000
1.9000
2.0000

vc
E+00

0.000
1.834
6,232
11.169
14,797
16,066
14.952
12.284
?.289
7.090
6.321
6.997
8.615
10.432
11.766
12,232
11.821
10.839
?.738
8.%29
8.646

Figure 6.12
Series RLC Circuit

Runge-Kutta Integration

ves
E+00

0.000
1.832
6.231
11.148
14,796
16,065
14,953
12,286
9.292
7,091
6.321
6996
B8.613
10.430
11.764
12.231
11.822
10.841
?.739
8,930
B.647

DT=.02

ABSERR
E~-03

0.0000
-0.3126
-0.9645
-1.3952
-1.1880
"0030é2

0.8949

1.8713

2.1502

1.5765

0.3712
-0.9733
«1.9153
~2.,0950
-1, 4752
~0,3374

0.8509

1.4350

1.7504

1.2094

0.27248

RELERR
E~06

0.00
170,52
i54.80
124,93

80.30
19.06
59.98
152.31
231.41
222,32
98.72
139.13
222.36
200.87
125.39
27.59
71.97
150.82
179.72
135.44
31.53

6.16

(C) 1978 UND




STEF RESFONSE OF SERIES RLC CIRCUIT

TIME
E+00

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000
1.1000
1.2000
1,3000
1.4000
1.5000
1.6000
1.7000
1.8000
1,9000
2.0000

ve
E+00

0.000
1.833
6,231
11.149
14,797
16,064
14,954
12.286
?.291
7.090
6.320
6.995
8.413
10.430
11,7453
12.232
11.823
10.841
?.739
B8.929
8.644

Figure 6.13
Series RLC Circuit

Adams-Bashforth Integration

VCs
E+00

0.000
1.833
6.231
11.148
14.796
16.065
14,953
12,286
P.292
7,091
6,321
6.996
8,613
10.430
11.764
12,231
11.822
10.841
?.739
8.930
8.647

DT=.02

ABSERR
E-03

0.0000
"’0 * 1205
—0.2902
-*0 * 6225
~0.92460
‘0096?4
-0.46353

0.0024

0.7058

1.1845

1.2311

0.8170

0.1039
-0,6273
~1.09463
-1.134%
“007574
-0.1270

0.5013

0.8941

0.9262

RELERR
E-06

0.00
635.74
46.58
935.74
62.58
60.34
42.49

0.19
75.96

167.04
194.76

116.79

12,07
40.14
?3.19
?2.95
64.06
11.71
51.47
100.13
107.12

(C) 1978 UND



The final test on cyclic phenomena showed greater differences
between NDTRAN version 1 and version 2 than in any of the other tests
that me made ( many of which are not shown in this chapter). Therefore

we are showing the programand the three outputs from the same RLC

circuit done using NDTRAN version 1.

—_—

Figure 6.13
Series RLC Circuit
Program

STEF RESPONSE OF SERIES RLC CIRCUIT

Fokokokokokok ok kX 8 0URCE LISTTING AR RKR KK
10001 X STEF RESFONSE OF SERIES RLC CIRCUIT

10002  XNOWARN

10003 *NOSTATS
10004 %EULER

10005 N VC=0

10006 N IL=0

10007 L VC=INTEGRAL (ILR)
10008 L IL=INTEGRAL(VIR)
10009 R ILR=IL/C

10010 R VIR=10/L~RXIL/L-VC/L
10011 C C=4,94E-2

10012 C R=1

10013 C L=,5

10014 C A=1

10015 C B=46.2831853

10016 8 VCS=10X(1+EXP(-AXTIME)X(~A/RBXSIN(R¥TIME)-CRS(RXTIME)))

10017 SPEC DT=.02yLENGTH=2sPRTPER=,1
10018 S ABSERR=VCS-VC

10019 S RELERR=ABS(ARSERR)/VCS

10020 PRINT VC,VCSyABSERRsRELERR




TIME

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0+6000
0.7000
0.8000
0.,9000
1.0000
1.1000
1.2000
1.3000
1.4000
1.5000
1.6000
1.7000
1.8000
1.9000
2,0000

TIME
E+00

0.0000
0,1000
0+2000
0,3000
0.4000
0.5000
0.6000
0,7000
0,8000
0.9000
1.0000
1.1000
1.2000
1.3000
1.4000
1.5000
1.4000
1.7000
1.8000
1.9000
2.0000

Figure 6.14 ;

Ve

0.000
1.543
6.070
11.551
15,831
17.447
16.098
12.624
8.545
3,502
4.467
S.616
8.273
11,273
13.457
14,102
13,142
11.117
8.905
7.353
6.7466

ve
E+00

0.000
1.834
6,232
11.149
14,797
16,066
14.952
12.284
9.289
7.+090
6.321
5.997
8,615
10,432
11.766
12.232
11.821
10.839
?.738
8,929
8.4646

Series RLC Circuit
EULER Qutput

VCSs ARSERR
0.000 0.0000
1.833 0.2902
4231 0.1608
11.148 -0,3830
14.794 -1.,0347
16.065 ~1.3814
14,953 -1.1444
12&286 “003381
?.292 0.7269
7.09) 1.5891
6+321 1.8541
6.994 1.3793
8.613 0.3408
10.430 -0.8429
11.744 -1.6924
12.231 -1.8706
11.822 -1.3193
100841 ‘002758
?.739 0.8347
8.930 1.5771
8.647 1.4809
Figure 6.15

Series RLC Circuit
Runge-Kutta Qutput

ves
E+00

0.000
1.833
6,231
11.168
14,794
16.065
14.953
12.286
P.292
7.091
6.321
6:994
8,613
10.430
11.764
12,231
11.8622
10,841
?.739
8.930
8.647

ABSERR
E-04

0.000
-3,130
wlpy 46397

~13.9469
-11.894
-3.065
8.982
18.736
21.528
15.783
3.715
-90746
“19&177
-20,976
—~14,749

~3.377

8.520
16,371
17.3525
12.108

2.729

RELERR

+ 00000
+135830
+ 02581
+ 03430
+ 06993
+ 08599
+ 07653
02752
+ 07823
+ 22409
29332
19717
+ 03957
+ 08082
+14384
+ 15293
+11160
02544
08570
+ 17661
+1943%

RELERR
E-05

0.000
17,075
15,499
12,508

8,039

1.908

4.007
15.250
23,170
22,258

5.877
13,932
22,264
20,112
12.554

2.761

7,207
15.101
17.994
13.559
3,156




oy

A —— M
Figure 6.16
Series RLC Circuit
Adams-Bashforth Output

TIME vC ves AESERR RELERR
E+00 E+Q0 E+00 E-04 E-07
G.0000 0.000 0.000 0.0 0.0
0.1000 1.833 1.833 ~-120.9 6596
0.+2000 4.231 6.231 -221.4 457 .7
043000 11.169 11,168 ~424.,3 559.0
0.4000 14,797 14,794 -927.3 4246.8
Q.5000 16.064 16,0465 ~9469.7 603,686
06000 14,954 14,953 ~&634,1 424,1
0.7000 12,286 12,286 4.8 3.9
0.8000 9,251 @.292 708,95 782.5
0.9000 7.+.090 7.091 1186.3 1673.0
1.0000 4.+320 6+.321 1231 .4 1248.,1
1.1000 4,995 b6.996 815.7 11466.0
1.2000 B.613 8.413 101.5 117.8
1.3000 10.430 10.430 ~629.8 4603,9
1.4000 11,745 11,764 ~1098.0 933.3
1.5000 12,232 12,231 -1137.2 ?29.7
1,4000 11.823 11.822 -754.,2 4639.7
1.7000 10.841 10.841 ~-124,9 115.2
1.8000 F.739 ?.739 303,4 9516.9
1.9000 8.929 8.930 895,46 1002.9
2,0000 B.644 B8.4647 P26.5 1071.5

6.20




7.1
Chapter 7
NDTRAN Simulation: Applications

A) Introduction

While the previous chapters had a number of application probiems,
the discussions there were specifically designed to illustrate the
manner in which NDTRAN statement types were used. The present chapter
is specifically concerned with various aspects of the application of
NDTRAN in various areas. Many simulation studies in the social sciences
as well as in hard sciences involve feedback of one kind or another,

a concept essential to system science studies.

The discussion below shows how NDTRAN solved three simple
applications problems as well as one more complex environmental
study. For users gbtaining NDTRAN2, the magnetic tape containing
the NDTRANZ interpreter contains, among other files, the complete
WORLD3 model by Dennis Meadows along with each of the separate sectors
in the model including Population Sector, Capital Sector and so on.
The programs are exported with Meadow's consent. The documents for
the WORLD3 model may be obtained either from MIT Press or from Meadows
at Dartmouth College.

B) Simple Problems
1) Mechanics Problem: Falling Body

Let us now examine the solution to a “fa]]ing body " problem.
We wish to model the path of an object hurled from a 7000 ft cliff
that has an initial velocity of 2000 ft. per second.  We neglect air
disturbance and assume that gravity is the only force exerted on the

object (32.3 ft./secondzl. As it is subject to the
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horizontal thrust, it is released. The problem is to determine where
the object will strike the ground, given the above conditions. Figure
7.1 shown below illustrates the basic problem and its parameters. The

coordinate system is centered at the base of the cl1iff.

Figure 7.1
ob“ect \ — > HOR I ZONTAL X direction
A
A
v
E
R
.7 : T or ¥ direction
000 £t !
Cc
C. | | FF A
L
v I P

In terms of acartesian coordinate system, the velocity of the object
relative to the abscissa (x-axis) is constant at 2000 ft. per second.
The velocity of the object increases because of the impact of gravity
(over time). Thus the height (1inear position) of the object therefore

decreases toward zero. The causal loop diagram in Figure 7.2 reflects
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the variable interactions as the object falls in space.

Figure 7.2
Causal Loop Diagram

ACCELERATION IN Y =3 VELOCITY IN Y meeemmcde POSITION IN Y

ACCELERATION IN X = YELOCITY IN X = POSITION IN X

Knowledge of the problem can afford two methods for solution in
this situation. The movement in the X and Y directions are independent
and can be found by integrating the respective velocities. Since the X
velocity is initially 2000 ft. per second and no other forces act in this
direction, we simply integrate it. The Y direction has a constant
acceleration and therefore linear velocity is:

Vy= ¥ tA T (7.1)

Thus from these ideas and the causal Toop diagram of Figure 7.2, the

flow diagram of Figure 7.3 is developed.
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Figure 7.3
Flow Diagram
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The program which will properly simulate this model in NDTRAN is

given in Figure 7.4




* %

0001
0002
0003
0004
0005
0006
Q007
0008
0009
0010
0011
0012
3013
0014
0015
0014
0017
0018
0019
0020
Qo221
0022

0023

Figure 7.4
Cliff Model

AN ORJECT THROWN FROM A CLIFF

X

x SO0OURCE LISTING

TITLE AN ORJECT THROWN FROM A CLIFF

OOOZZIDCD I X % % %

NOSTATS

NARROW

CHECK

EULER

Y K=INTGRL (VYR JK)
UYR.KL=VYD+AY . KXTIME.K
AY . K=GRAV
X+R=INTGRL (VXR . JK)
UXR.KL=VXD

Y=7000

X=0

vYo=90

VX0=2000
GRAV=-32,2

FARM IOT=,01

FARM STOP=21

PARM START=0

FARM PRTFER=1

FARM FLTPER=1

NOTE IMFACT OF GRAVITY
FPRINT X»Y

FLOT X=X/Y=Y

L I S N B

7.5

CC)

1276 UND

As can be seen from the table in Figure 7.5 and the graph on Figure 7.6,

the movement in the horizontal direction will be linear with time. The

movement along the vertical direction will be parabolic because of the

integration of a straight line.
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Figure 7.5
Program Output

TIME X Y
E+00 E+03 E+03
Q.000 0.000 70000
1.000 2.000 6.9841
2.000¢ 4.000 69359
J3.000 6.000 6.8504
4,000 8,000 4.7430
9,000 10.000 6.5983
6.000 12.000 6.4214
7.000 14.000 6.2122
8.000 14.000 5.9709
. 000 18.000 5.6973

10.000 20.000 S5.3916
11.000 22,000 5.0537
12.000 24,000 4.6835
13.000 26,000 44,2812
14,000 28.000 3.8447
15.000 30.000 3.3799
14.000 32.000 2.8810

17.000 34,000 2,3498
18.000 34.C00 1.7846%5
12,000 38,000 1.1910
20.000Q 40,000 0.5632

21,000 42,000 “0.0947

There is no way to stop the program dynamically, thus one will
“note that the Y value will go negative implying impact with the ground.
Impact with the ground will occur  between the 20th and the 21st second
after being thrown.

It is possible to do this problem a second way. If it was not
desirable to use Equation 7.1 then the velocity in the Y direction
would have to be calculated before position. But integral relationships

still exist between the acceleration and the velocity of the object.
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Figure 7.6
Cl1iff Problem
Plot of X and Y
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Thus we now obtain the flow diagram of Figure 7.7

Three integrations are now required; two for the Y position and

one for the X position. In the case of the Y variable, the velocity

is obtained by integrating the acceleration and the position is obtained

by integrating the velocity.

In this type of problem some care has to be

extended since the velocity variable appears as both a rate and a variable.
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Figure 7.7
Flow Diagram
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Avoiding this can only be accomplished by some linear transformation of
the states which would cause a loss of the desired defined variables.

A source listing and the corresponding results for this problem
variations are given in Figures 7.8, 7.9 and 7.10 respectively. One
should note that the tables and graphs for both problem approaches

are identical.




¥ X X

Q001
0002
00032
0004
00035
0006
Q007
0008
0009
0010
0011
0012
0013
0014
0015
0014
0017
0018
0019
0020
0021
00622
0023
0024
0025

B LTI S uApery

DOCZZZ U 000 % % % %%

Figure 7.8
Cliff Model

AN OBRJECT THROWN FRDOM A CLIFF
¥ % SO0OURCE LI STING

TITLE AN ORJECT THROWN FROM A CLIFF

NOSTATS
NOWARN

NARROW

CHECK

EULER

VY . K=INTGRL(AY . JK)
Y+ K=INTGRL (VYR . JK)
VYR.KL=VY,K

X K=INTGRL (VXR., JK)
VXR.KL=UX0

Y=7000

x=0

VY=0

vYO=0

VX0=2000
GRAV=-32,2

FARM DT=,01

PARM STOP=21

FARM PLTPER=1

FARM FRTPER:=}

NOTE IMPACT OF GRAVITY
PRINT X.Y

LPLOT X=X/¥=Y

X X % X X%

(ch

7.9
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Figure 7.9
Table
TIME X Y
0,600 0 7000,0
1.000 2000 L9841
2,000 4000 6935.9
3.000 4000 4850, 46
4,000 8000 6743.0
5. 000 10000 6598.3
&,000 12000 6421 .4
7.000 14000 &6212.2
8,000 146000 5970.9
7.000 18000 5497, 3
10,000 20000 59391.4
11.000 22000 S053.7
12.000 24000 44683.5
13.000 26000 4281.2
14.000 28000 3846.7
15,000 30000 3379.9
16.000 32000 2881.0
17.000 34000 2349,8
18.000 35000 1786.5
19.000 38000 1121.¢0
20,000 40000 543,2
21,000 42000 ~96.7
Figure 7.10
Plot
Y=Y
10500 21000
1677.3 . 3451.5
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Figure 7.4.1
Cliff Model

KRR KKK SOURCE LISTING KRR kk kKKK

10001 X AN ORJECT THROWN FROM A CLIFF
10002  XNOSTATS
100037 %XNARROW
10004 XSOURCE
10005 *XREF
100048 XEULER
10007  XWARN
10008 L Y.K=INTEGRAL (VYR.JK)
10009 R VYR.KL=UYO+AY.KXTIME.K
10010 A AY.K=GRAV
10011 L X.K=INTEGRAL (UXR..K)
10012 R VYXR.KL=VUX0
10013 N Y=7000
10014 N X=0
10015 C VYD=0,UX0=2000,GRAVY=-32.2
100146 SFEC DT=.01+START=0,STOFP=21,PRTFER=1sFPLTFER=1
10017 NOTE IMFACT OF GRAVITY
10018 PRINT X»sY
10019 PFLOT X=X/Y=Y
Figure 7.8.1
Cliff Model
30K Ok KK Kk Kk K SOURTCE LISTING HORKOKOK KKKk
10001 % AN ORJECT THROWN FROM A CLIFF
10002 XNOSTATS
10003 XNARROW
10004 %SOURCE
10005 *XREF
10004 ¥EULER
10007 XWARN
10008 L VY K=INTEGRAL (AY.JK)
10009 R AY.KL=GRAV
10010 L Y.K=INTEGRAL (VYR.JK)
10011 R UYR.KL=VY.K
10012 L X.K=INTEGRAL (VXR.JK)
10013 R VUXR.KL=UXD
10014 N Y=7000
10013 N X=0
10016 N VY=0
10017 C ¥Y0=0,VX0=2000yGRAV=-32,2
10018 SPEC DIT=.01:5TART=0,STOP=21,PRTPER=1,FLTPER=1
10017 NOTE IMFACT OF GRAVITY
10020 PRINT X»Y
10021 PLOT X=X/Y=Y




2) Savings Account Problem

The growth of a savings account illustrates a first order

{(positive) feedback system. The causa] loop diagram that is appropriate

appears in Figure 7.11.

Figure 7.11
Causal Loop Diagram: !nterest Problem

-~ N+

Rate of increase
Principle +> of Principle In

units per period of time
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.- The Flow Chart to illustrate this is shown in Figure 7.12.

Remember, any system involving feedback will exhibit exponential changes
in a level or state variable,

dr

Figure 7.12
Flow Diagram: Interest Accumulation

Source

PRINCIPLE

—=> -

Constant

Exponential rise or decay implies that the next value of a level
is a defined percentage of the current value. That is the Tevel (quantity)

at time t+l is a defined percentage of the level (quantity) at time t




In the case of exponential change,the level is given an initial value

and increases or decreases over time. The shape of the rise or decline

curve depends on the size of the constant involved.

For exponential

rise or decay, the larger the constant, the steeper the curve.

The sum of $1000.00 is deposited in a bank account which pays

5 percent per annum. Determine the amount accumulated in the account if

it is compounded:
a) annually
b) quarterly
c) daily

The basic idea of compounding interest is fairly simple. The

money remains in the savings account for a given period {say one year)

and at the end of the period the sum in the bank is multiplied by the

rate of interest for the given period. An example may help:

Amount in bank for one year

rate at which earnings occur

(5 percent per year)

interest earned in dollars/year 50.00
Total in bank at end of year $1050.00
Arount in bank for second year  $1050.00
rate at which earnings occur .05

interest earned in dollars/year
for the second year 52.50

Total in bank at end of
second year $1102.50-

(5 percent per year)

The process is continued for as many years (periods) as is desired.
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There is only one caveat that must be mentioned. That is, what
if the rate of interest is given in terms of percent per year on a
savings account, and the point is also noted that the bank account
is compounded quarterly or dafly. This raises a very important point
not only for persons with a savings account, but also for those
wishing to do dynamic modeling. The point is that the rates at which
the level or state variables change must be compatible with the
solution interval or calculation time period for the model.

In the example given above, the calculation period was one year.
That is, the interest was added to the account ( compounded ) annually.
Thus if the interest earnings are given at 5 percent per year and the
interest is calculated once each year; the rate at which the savings
account accumuiates interest is compatible with the calcuiation period
for adding the savings earned to the original balance.

What if, however, the account earns interest at 5 percent
per year (.05) and the interest is added to the account every three
months { compounded quarterly). In this case one would not multiply
the balance of the account by .05 every three months. If one did,
that would amount to an effective earning power of 20 percent per year.
The earning power is 5 percent per year compounded quarterly. Thus,
one would need to divide the annual rate by 4 to obtain the nominal
quarterly rate of .0125 or 1.25 percent per quarter which is compatible
with the 5 percent per year. However, the DT period has been modified
to 3 months rather than to 12 months and the nominal interest remains
at 5 percent per year. The programs for annual and quarterly compounding

of nominal 5 percent annual interest on accounts are shown below.




Figure 7.13
Interest Compounded Annually

X ok ¥ X% X% SO0OURCE LISTING X X % % X

0001 TITLE INTEREST PROBLEM

0002 % EULER |
0003 % CHECK

0004 % NOWARN

0005 % NOSTATS

0006 % NARROW

0007 L P.K=INTGRL(INTR.JK)

0008 N F=1000

0009 R INTR.KL=P.KXIR

0010 € CON=1

0011 C IR=.05

0012 PARM DT=1

0013 PARM STOFP=20

0014 PARM PRTFER=1

0015 PARM PLTFPER=1

0014 NOTE INTEREST ACCUMULATION
0017 FRINT P

0018 FLOT P

Figure 7.13.1
Interest Compounded Annually

KK KK KOk Kk SOURCE LISTING XRRRRKKKKE

16001 x INTEREST PROBLEM

10002 XEULER

10003 %NOSTATS

10004 xXNARROW

10005 L P.K=INTEGRAL (INTR..JK)?
10004 N P=1000

10007 R INTR.KL=P.KXIR

10008 C CON=t

10009 C IR=.05

10010 8§ PF.K=1000X(1+IR)XXTIME.K
10011 SPEC DT=1,START=0,8TOP=20,FPRTFER=1PLTPER=1
10012 NOTE INTEREST ACCUMULATION
10013 FRINT PsFF

i0014 PLOT P




Figure 7.14
Interest Compounded Quarterly

X X ¥ X % SOURCE LISTING XX K x X

0001 TITLE INTEREST FROBLEM

0002 % EULER

0003 x CHECK

0004 x NOWARN

0005 ¥ NOSTATS

00046 * NARROUW

0007 L P.K=INTGRL{INTR.JK)
0008 N P=1000

0009 R INTR.KL=P.,KXIR
0010 C CON=1

0011 € IR=.,05

0012 PARM DT=,205
0013 PARM STOP=20
0014 PARM PRTPER=1
0015 PARM PLTPER=1
0014 NOTE INTEREST ACCUMULATION
0017 PRINT P
0018 PLOT P -
PAGE 2 INTEREST PROBLEM -~ INTEREST ACCUMULATION (C) 1978 UND

Figure 7.14.1
Interest Compounded Quarterly

ACRROK OO K K SOURCE LISTING ook kk

10001 % INTEREST FROBLEM

10002 XEULER

10003 XNOSTATS

10004 XNARROW

10005 L P.K=INTEGRAL (INTR.JK)
10006 N P=1000

10007 R INTR.KL=P.KXIR

10008 C CON=1

10009 C IR=.05 '

10010 SPEC DT=.25sSTART=0,S5TOP=20,PRTFER=1yPLTPER=1
10011 NOTE INTEREST ACCUMULATION
10012 PRINT P

10013 PLOT P




Figure 7.15
Interest Compounded Annually

TIME F
E+0Q0 E+03

0.000 1.0000
1.000 1.0500
2.000 1.1025
3.000 1.1576
4,000 1,2155
3.000 1.2763
6.000 1.3401
7.000 1.4071

8.000 1.4775
2.000 1.5513
10.000 1.6289
11,000 1.7103
12.000 1.7959
13.000 1,8854

14.000 1.9799
15.000 2.0789
146,000 2.1829
17.000 22920
18,000 2.4066
192.000 2,5270
20.000 2.6533

Figure 7.16
Interest Compounded Quarterly

TIME F

0.000 1000.0
1,000 1050.9
2.000 1104.5
3.000 11480.8
4,000 1219.9
5.000 1282.0
6.000 1347.4
7.000 1414.0
8.000 1488.1
?.000 1563.9
10.000 1643.4
11.000 1727.4
12.000 1815.4
13.000 1907.8
14,000 2005.0
15.000 2107.2
14.000 2214,5
17.000 2327.4
18.000 2445,9
19.000 2570.3
20.000 2701.9%
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The fact of compounding quarterly means that the interest
earned is entered into the account more rapidly. Thus the earned
interest itself begins to earn interest at an earlier period. As
noted in the figures above the only program change to move from

annual compounding to quarterly compounding is the DT size.

3) Poisson Distribution

Certain types of simulations involve a random arrival of events
at a particular station. This may be obtained in NDTRAN using a
random number generator and two table functions. The particular group
of students who needed this type of distribution were developing a
model of plane arrivals and departures from an airport. The arrivals
were considered to be random. The program below shows the method used
for calculating the arrivals based on a poisson inter-arrival time.

The first step involved a uniform random number generator
(available in NDTRAN) with a value generated between 0 and 1.
This function was used with two TABND functions. One of the TABND
functions yields an average of one arrival per DT for normal hours.
The second TABND function yields 2.5 arrivals per DT for rush hours.
A PULSE function was used to signal the rush hours condition. In the
example shown below only one TABND is shown. The program for the generation
of the Poisson Distribution is shown in Figure 7.17 with the tabular
output in Figure 7.18 and the graphic output in Figure 7.19. The
TABND function represents the inverse of the cumulative distribution

function for the specified average arrival time.
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LES

Qs

* % %
0001

0002
0003
Q004
0005
00046
0007
0008
000%?
00190
0011
0012
0013
0014
0015
0016
0017
0018

001%
0020
0021
0022
0023
0024
0025
0026
0027
0028

Figure 7.17

Poisson Distribution:
Program

THIS FROGRAM GENERATES FOISSON DISTRIBUTED RANDO (C) 1978 UND
¥ X SOURCE LISTING X X %k %k X
TITLE THIS FROGRAM GENERATES POISSON DISTRIBUTED RANDOM VARIAE

NOSTATS

NARROW

CHECK

EULER

LEV.K=INTGRL(TEST . JK?

LEV=1

TEST.KL=LEV.KXRND.K

NOTE

NOTE GENERATE PSEUDDO RANDOM NUMBER BETWEEN O AND 1
NOTE

A RND.K=NOISE(SEED)

C SEED=12345

NOTE

NOTE GENERATE POISSON DISTRIBUTED RANDOM VARIABLE
NOTE

8 FOISON.K=TABND(TABL1»RND.K+»0Q»1)

T TﬁBl'—"OOO!l02!1o75!203!29?!300!3025!3050!308!4005,404!4965!50

T X KR

X 5’3!5065l'600!6.5!7.09705!805!2000
PARM DT=1

PARM START=0

PARM STOF=20

FARM PRTPER=1

PARM PLTPER=1

NOTE FOISSON PRINTED OUTFUT
PRINT RND:FOISON

NOTE PLOTTED OUTPUT FOR POISSON
PLOT RND=R(0»1)/POISON=+(0»20)
FLOT RND=R(0,1)//POISON
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Figure 7.18

Poisson Distribution:
Tabular Qutput

THIS PROGRAM GENERATES FOISSON DISTRIBUTED RANDO ~(P) 1978 UND

TIME RND POISON
E+00 E~-03 E+00
0.000 oB8.26 4.917
1.000 842.90 5,929
2.000 763.06 6,122
3.000 ?92.31 17.147
4,000 84.30 1.4627
5,000 987.04 4,908
6.000 745.48 5.964
7+000 189.58 2.627
8.000 428.10 3.937
?.000 862.43 7,105
10.000 321.646 34355
11.000 148,09 2,459
12.000 113.65 1.906
13.000 169.07 2.468
14.000 ?71.58 14.900
15.000 427 .86 3.936
16,000 642.94 5.237
17,000 &.96 0.230
18.000 255.25 3.028
12,000 4468.87 4.181

20.000 515.99 4,481
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Figure 7.19
Poisson Distribution:
Graphic Qutput

THIS FROGRAM GENERATES FOISSON DISTRIBUTED RANDO —-(F) 1978 UND
R=RNL +=FOISON
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Figure 7.17.1

Poisson Distribution:
Program

THIS PROGRAM GENERATES POISSON DISTRIBUTED RANDO C 1976 UND
KERKRARRAN SOURCE LISTING kKRR Rk Rk

10001

10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
1001%
10016
10017

10018
10019
10020
10021
10022
10023

10024

2 THIS PROGRAM GENERATES POISSON DISTRIBUTED RANDOM V

ENOSTATS

ENARROW

XEULER

L LEV.K=INTEGRAL(TEST . JK)

N LEVs}

R TEST.KLsLEV.KXRND.K

NOTE

NOTE BENERATE PSEUDD RANDOM NUMBER BETWEEN O AND 1
NOTE

A RND.K=NOISE(SEED)

€ SEED=12345

NOTE

NOTE GENERATE POISSON DISTRIBUTED RANDOM VARIABLE
NOTE

A POISSON.K=TABND(TAB1,RND.KrOr1) ,

T TAB1=0.0/1.2/1.75/2.3/2.773.,0/3.25/3, 50/3.8/4 0574,

X 5.3/5.65/6.0/6.5/7.0/7.5/8.5/20.0

SPEC DT=1,8TART=0y8TOF=20,PRTPER=1,PLTPER=1
NOTE POISSON PRINTED OUTPUT

PRINT RND,POISSON

NOTE PLOTTED OUTPUT FOR POISSON

PLOT RND=R(0+1)/POISSON=+(0,20)

PLOT RND=R(0O+1)//POISSON
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C) Complex Problem

Cedar Bog Lake, a lTake in Minnesota has been modeied by R.B.
Williams, and the results have been published.* A.A.B. Pritsker, of Purdue
University, has a problem in his book concerning the Cedar Bog Lake

Model. **

* B.C. Patten(ed.), SYSTEMS ANALYSIS AND SIMULATION IN ECOLOGY,
vol. 1, Academic Press, NY, 1971, pp. 543 - 582.

** pritsker, A.A.B., The GASP IV Simulation Language, John Wiley
& Sons, NY, p. 324.
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The problem worked out below is a modification of the problem as
originally set up by Williams, and also as suggested by Pritsker.
There are five basic levels in the ecosystem represented by the

lake which are:

1) ENVIRO -Environmental losses of energy to the lake
2) CARN -Carnivores in the lake

3) HERB -Herbivores in the lake

4) PLANT -Plants in the lake

5) ORGAN -Organic buildup in the lake

These five level variables may be described as the state variables whose
behavior over time describe the system, These variables, together with
SUNLIGHT, an exogenous variable, combine to determine the overall energy
in the lake in terms of ca]ories/centimeterz. The lake entities are
modeled in terms of their energy content, the energy transfers among the
lake entities, and energy losses to the environment.
The annual cycle of solar radiation was simulated using the

following equation:

SUN=95.9 * (1.0 + .635 * sin(t))

t = 0 at the vernal equinox.

The eguations of the model are:

95.9 - (1.00 + 2.55 + .48)PLANT
.48(Plant) - (6.90 + 6.12 + 4.85)HERB

PLANT

HERB
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CARN = 4.85(HERB) - (2.70 + 1.95)CARN
ORGAN = 2.55(PLANT) + 6.12 (Herb) + 1.95{(Carn)
ENVIRO = 1.00(Plant) + 6.90(Herb) + 2.70(Carn)

The table shown by Williams shows the coefficients:

VARIABLE Photo-Synthesis Transfer Respiration Loss

cal cm2 yr-1 Rate Rate Rate
PLANT 85.9 .48 "1.00 2.55
HERB 4.85 6.90 6.12
CARN . 2.70 1.95

For instance, the sun shining on the lake adds energy to the lake.
For the given area it adds 95.9 calories per cm2. That is the sun adds
energy to the lake at the rate of 95.9 calories per cm® . The other
variables are energy measured in calories, the unit reference being
the cm2 . Employing these coefficients, the ecosystem may be represented
by the causal loop diagram in Figure 7.20 and the. Flow Diagram in Figure 7.21.
For a moment let us digress. In many types of modeling it is
usual to associate two or more rates with a single level variable. For
instance, for a particular age group of the population there may be three rates:
For the population age group O - 18 years;
1) a rate to represent births per year;
2) a rate to represent deaths per year;

3) a rate to represent those maturing to
the next age group--i.e., 19 - 24 years.




Figure 7.20
Cedar Lake Model:
Causal Loop cmmmwmak

RPLANT o : amzc_ﬂv
PLANT . ENVIRO

Mczm
[ S| T
CARN
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Figure 7.21
Cedar Lake Model:
Flow Diagram

Evwviroe
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The flow chart for this population level would look as shown below

Figure 7.22

N b POPULATION P POPULATION
0-18 19 - 24

o o

5 ¥

5 E B

Death
Rate

The equations involved are as follows:

L. POP.K=INTEGRAL(BR.JK-DR.JK-MAT.JK)
R BR.KL=...

R DR.KL=...
R MAT.KL=...

It is perfectly possible to handle this problem differently, by using

only a single rate equation, i.e. by lumping all rates with a composite
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variable. The flow chart would be as shown below:

Figure 7.23

4 POPULATION
0-18

Rate q

And the required equatiohs would be:

L POP.K=EULER(RATE.JK)

R RATE.KL=BR.XL-DR.KL-MAT.KL
In the existing rate equation all of the necessary conditions would
need to be considered. It is this latter approach that is generally
used in the CEDAR LAKE model.

From both the Causal Loop Diagram . of Figure 7.20and the Flow
Diagram of Figure 7.21 .t is apparent that there are five levels in the
model. Three of the levels involve exponential change as they are
involved with feedback. The other two, the Environmental and the Organic
material levels are residuals. All five of the level variables feed
the Energy variable, which measures the energy in the lake.

The technique of programming the model is to use only a singie

rate variable for each level variable, with that variable reflecting the
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total change in the state variable. The program is developed in

a modular form, with each module representing a specific subsystem of

the lake.

The constants are generally defined at the end of the program

in the section noted as CONSTANTS. The data coefficients appropriate

for the gains and losses of energy for each variable are shown as

numeric constants in the given equations, and are taken from the before

mentioned section, where the equations of the model were discussed.

Essentially the structure of the model is as follows:

A)

8)

The basi¢ or initial form of eneray to the lake is

by means of the sun. The sun has an impact on the

PLANTS that produce energy by means of photosynthesis.
The second level in the lake is the herbivorous

animals or those that use the plants as food. The
coefficients for TRANSFER RATE reflect the rate at

which one variable is consumed by another--i.e., plants
are consumed by herbivores. The Respiration Rate is

the oxygen exchange rate for the plants and animals,

and the loss rate is the rate at which the plants and
animals are losing energy to the environment. Experimental
runs indicate that the lake environment changes littile
except with respect to changes in therlevel of plants.
Changes at the level of plants causes significant changes

in the energy levels in the lake.
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Qutput is measureéi. as energy in the lake, which is given as
calories per centimeter-squared. The program is shown in Figure 7.24
and the table output is in Figure 7.25 with the plot output in
Figure 7.26.




K

0001
0002
0003
0004
0005
0006
Q007
0008
Q0%
0010
0011
0012
0013
0014
0015
0014
Q017
0018
0019
0020
0021
0022
0023
0024
0025
0024
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
038
0039
0040
0041
0042
0043
0044
0045
00446
0047
0048
0049
0050
0051
0052
0053
0054

Figure 7.24
Cedar Lake Model

TITLE CEDAR LAKE ENERGY BALANCE
SOURCE

CHECK

NOWARN

NARROW

EULER

NOTE

NOTE

NOTE PLANTS

N PLANT=24.0

A PLL1.K=(CC14C2554CAB)IXPLANT.K
A P2.K=CLIP(P&SsONE»PLANT. .KyN2B)XPLANT .K
R RPLANT.KL=SUN.K~-FL1.K

i. FLANT.K=INTGRL (RFLANT. JK)
NOTE

NOTE

NQTE HERBEVIORS

N HERB=.6

A H1 . K=CABXPLANT .K

A H2.K=({C490+L6124C485)XHERB.K
R RMHERB.KL=(CC1) (H1 ,K-H2.K)

L HERB.K=INTGRL {RHEREB..K)

NOTE

NOTE

NOTE CARNIVORS

N CARN=.6

A Cl.K=C485%HERB.K

A C2.K=(C2704C1935) (CARN.K)

R RCARN.KL=C1.K-C2.K

L CARN.K=INTGRL (RCARN.JK)

NOTE -

NOTE

NOTE ORGANIC

N ORGAN=0

A 01 .K=C255%PLANT.K

A 02.K=C612XHERB.K

A 03.K=C270KCARN.K

R RORGAN.KL=01.K+02,K+03.K

L. ORGAN.K=INTGRL (RORGAN.JK)
NOTE

NOTE

NOTE ENVIRONMENT

N ENVIRO=0

A E1.K=CC1¥PLANT.K

A E2.K=C6P0%XHERB.K

A E3.K=C270%CARN.K

R RENVRO.KL=E1.K+E2.,K+E3.K

L ENVIRQ,K=INTGRL (RENVRO.JK?
NGTE

NOTE

NOTE SUN‘S ENERGY INPUT TO THE LAKE
A SUN.K=C9S9%X(CC1+CO6ISASIN(TIME .KXCC2%C314))
NOTE AVERAGE ENERGY IN THE LAKE

* I I W ¥

A ENERGY .K=(PLANT + K+HERB . K+CARN . K+ORGAN « K-ENVIRO . K+SUN.K) /TINE
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0055
0056

0057
0058
0059
0060
0061
0042
0063
00464
004635
0044
00467
00468
00469
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
ocB4
0085
0086

CEDAR LAKE ENERGY EALANCE

NOTE CONSTANTS
FOO3=,003

FO416=.0414
Fi=,1

F3=,3

PS5=.5

Ph=+6
F&5=,45
F7=.7

ONE=1
ZEROQ=0
N28=28
CC1=1,00
£255=2.55
{48=,.48
C690=46,%90
Cod12=6,12
C485=4 .85
C270=2.70
C?59=95.9
C0635=,0635
CC2=2.00
C314=3.,14
C195=1.95
NOTE CONTROL CARDS
FARM DT=,01
FARM START=1
PARM STOP=51
PARM PRTPER=2
PARM PLTPER=2

aocaoooooocotgoaooOooOOnOOOon

PRINT PLANT,CARN>ORGAN»ENVIROyENERGY
FPLOT FLANT/CARN/ORGAN/ENVIRO/ENERGY

Figure 7.24-continued

7.33




7.34
Figure 7,241

Cedar Lake Model :
Systems Dypamics Program

CEDAR LAKE ENERGY BALANCE
AR RO KK ok Kok SOURCE L. ISTING RAORRRCKOKRKK

10001 % CEDAR LAKE ENERGY BALANCE
10002 %SOURCE

10003 *NOOBJECT

10004 XWARN

10009 NOTE

10004 NOTE

10007 NOTE PLANTS

10008 N PLANT=24.0

10009 A PL1I.K=(1.00+2.55+.48)KPLANT.K
10010 A P2.K=CLIF(F&SsONEPLANT .KyN2B8)XPLANT.K
10011 R RPLANT.KL=SUN.K-PL1.K

10012 L PLANT.K=INTEGRAL (RPLANT.JK)
10013 NOTE

10014 NOTE

10015 NOTE HEREEVIORS

10016 N HERB=.é

10018 A H2.K=(46.90+6.12+4,85)%HEREB.K
10019 R RHERB.KL=(1){(H1.K-H2.K)
10020 i HERB.K=INTEGRAL {RHERE.JK)
10021 NOTE

10022 NOTE

10023 NOTE CARNIVORS

10024 N CARN=.4

10025 A C1.K=4.85%HERB.K

10026 A C2.,K=(2,70+1.95) (CARN.K)
10027 R RCARN.KL=C1.K-C2.K

10028 L CARN.K=INTEGRAL (RCARN.JK)
10029 NOTE

10030 NOTE

10031 NOTE ORGANIC

10032 N ORGAN=Q

10033 A 01.K=2,55%KPLANT.K

10035 A 03.K=2.,70%kCARN.K

10034 R RORGAN.KL=01.K+02.K+03.K
10037 L. ORGAN.K=INTEGRAL (RORGAN.JK)
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Figure7.24.1 Continued

10038 NOTE
10039 NOTE
10040 NOTE ENVIORONMENT i
10041 N ENVIRO=0

10042 A E1.K=1,00%FLANT.K
10043 A E2.K=46.90%HERR.K. |
10044 A E3.K=2.70%CARN.K

10045 R RENVIRD,KL=E1.K+E2.K+E3.K

10046 L ENVIRD.K=INTEGRAL (RENVIRO.JK?

10047 NOTE

10048 NOTE

10049 NOTE SUN‘S ENERGY INPUT TO THE LAKE

10050 A SUN.K=95,9%(1.0+.0635XSIN(TIME.KX2,0%3.14))
10051 NOTE AVERAGE ENERGY IN THE LAKE i
CEDAR LAKE ENERGY BALANCE

10052 A ENERGY.K=(PLANT.K+HERB.K+CﬁRN.K+ORGRN.K—ENUIRD.K+SUN.K)/TIHE-K
10053 NOTE CONSTANTS

10054 C P0O03=.003
10055 C P0416=.0416
10056 C FPl=,1

10057 C F3=.3 -
10058 C F35=.5

10059 C Pé=.4

10060 C P&5=.65
10061 C F7=.7

10062 C ONE=1

100463 C ZERO=0
10064 LC NZ8=28B

10065 NOTE CONTROL CARDS
10066 SFEC DT=.01sPRTPER=5ySTART=1,8TOP=31
10047 PRINT PLANT r HERB s CARN» ORGAN s ENVIRO» SUNy ENERGY




CEDAR LAKE ENERGY BALANCE

TIME
E+00

2.000

4,000

6,000

8.000
10,000
12.000
14.000
16,000
18.000
20,000
22,000
24,000
26,000
28.000
30.000
32.000
34,000
346.000
38,000
40.000
42,000
44,000
46.000
48,000
50.000

FLANT
E+00

23,102
23.084
23.082
23.079
23.076
23.074
23.071
23.06%9
23.066
23.064
23.061
23.059
23.057
23.054
23.052
23.050
23.047
23.045
23,043
23.041
23.039
23.0346
23.034
23.032
23,030

Figure 7.25

Cedar Lake Model:

Table Output

CARN
E-03

658.22
657 .00
4597.05
657.11
657.17
657.23
687 .29
637 .35
657.41
657 .48
657 .54
657 .60
657 .66
657.73
657.79
657.85
657.92
657,98
638,05
458,11
658.18
658.24
658.31
658,37
658.44

ORGAN
E+03

0.0670
0.1998
0.3326
0,44653
0.5981
0.7309
0.8637
0.9965
1.1293
1.2621
1.3949
1.5277
1.4404
1.7932
1.,9260
2.0588
2.1914
2.3244
2,4572
2.5900
2.7227
2.8355
2.9883
3.1211
3.2539

ENVIRD
E4+03

0.0302
0.0903
0.1503
0.2103
0.2703
0.3303
0.3903
0.4504
0.5104
0.5704
0.6304
0.6904
0.7504
0.8104
0.,8705
0.9305
0.9905
1,0505
1.1105
1,1705
1.2305
1.2906
1.3506
1.4106
1.4706

7.36

(C) 1978 UND

ENERGY
E+00

78.484
57.422
50.403
446 .8%94
44,788
43,385
42,382
41.630
41.045
40.577
40.194
32.875
39,605
37.374
39.174
Jds.?98
38.843
38.706
38.583
38.472
38.371
38.280
38.1%97
38.121
38.051




-

NDMOO

M3 —

7.37

Figure 7.26
Cedar Lake Model:
Graphic Output

CEDAR LAKE ENERGY BALANCE (C) 1978 UND
P=PLANT C=CARN O=0RGAN E=ENVIRO A=ENERGY
23 23.25 23.3 23.75 24
+ &9 + 65235 + HO5 + 8975 + 66
1Y) 874.5 1483 2491.5 3300
30 397.5 765 1132.5 1500
38 48.25 58.5 68.735 79
0« + P o« L I T I L T L I D D I B C + « + +A, 0E
+ O F . A c . + OE
' B + A ’ c . + FOE
. F O A . N c . + OE
. P 0 ' ' c . + UOEA
N F A EG . . [ »
. F A 0 [} Ce v 0E
. FA » O . c. « DOE
* F + 0 * C + PA!DE
+ P . D L C * PQVUE
N S T T T Y ¢ Y S S C o v ¢ s & s FAsOE
. P D) 0 3 +C . PQ'OE
« AP . EO +C .
¢ AP + + 0 N . 0OE
+ AP ’ . 0 + C + OE
+A P . . EO + C .
+A P + + 0 « C . 0E
+A F . . o . C « DOE
+AP + * 0. e . 0OE
+ AP ] + +EOC .
Y L T T T T S S S S S S S C o o o & & COE
ﬁ p * » L C 0 + OE
AP ’ . N C EO .
AF . . . c 0o . QE
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100

101
102

103

104
1095
iOé
107
108
109
110
111
112

113

114
115

116

152
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A-1
NDTRANZ
NDTRANZ

kkokkkkkk ERROR MESSAGES xkkkokiorkik

The card tuyre indicator which bedins in column one is
not recosnized bu NDBTRAN. That card will not be
rrocessed.

The rrevious card maw not be continued. This
continuation card will not be Processed.

The indicated card exceeds the limit of one
continuation rer statement a3nd will not be rrocesseard,

- A MEND statement was encountered but a MACRO was

not beins processed. The MEND statement will be
idgnored.,

A RERUN card maw not arrear within a MACRO drous.
The card will be idnored.

A card ture other than Ty Cr PARM» or X has arreared
in RERUN mode and cannot be rprocessed.

A prodram maw not start with a continuation
statement. The card will be ignored.

All control cards must immediatelw follow the TITLE
cards If no TITLE card is eprovidedr thew must
Frecede anwy other ture of statement.

Only one TITLE card maw be srpecified and it must be
the first card of the errogram.

3 macro maw not be defined within asnother MACRO
grour. The MACRO card will be idgnored.,

The indicated card conteins no eaustion or data and
thereforer cannot be rrocessed.

An EXPND card mas naot aprear within a8 MACRO srous.
The card will be isgnored.

The end of the eprodgram was encountered hefore the
MEND in the MACRO mode.

The indicsted RERUN statement is not followed bu a
valid variable chanse: This RERUN will not be
executed.

A new intedration techniaue has alreadws been
reauested for this RERUN., This card will be idnored.

Intedration tvre is the only control card allowed in
RERUN.

Too mang chandges have been reauested in the RERUN.
This card and 311 further ones in this RERUN will be

ignored.

There is alreadwy 8 DEF card for this variable.,




153

204

206 -

A -2

NDTRANZ

No definition occurs on this DEF card. It is
ignored.,

- The indicated conmtrol card srecifies an ortion which

is not recodnized be NOTRAN.

- The indicsated control card reaquests anm ortion which

302 -

311

313

314

315

314

401

402
403

404

405

was rreviously srecitied. This reauest will be
ignored.

‘No’ mag not be srecified before an intedgration
ortion.

amac r o contains more than 18 arduments.
Missing Farenthese delimiter for argument list.
Argument list for MACRO is missind,

The user has already defined a MACRO with this name.
The same dummw ardument name occurs twice.

Exress information cccocurs after indicated end of
MACRD or EXPND ardument list.

There was an EXPND statement encountered for an
undefined MACRO» i1.e.+» MACRO name encountered in

EXFND statement is neither a3 built-in MACRO nor a
user—defined MACRO.

A MACRO in an EXPND statement does not have the
nymber of arguments reauired by either the MACRO
definition or @s the built-in MACRO recuirements.,

A data Pfield of an expanded statement has exceeded
the 72 character length of one card.,

There is 3 missing MACRO name.

Arn arithmetic exrression occurs in the MACRO name
field.

Exransion has caused the comment field to be
truncated. The data field has remained intact.

A MACRD mav not be exranded due to critical errors in
its definition.

A durlicate equal sidn has arreared in an arithmetic
exprression. The expPression cannot be evaluated.

Invalid seauence of orerational sumbols.
Missing ridght rarenthesis at end of statement.

No arithmetic exmrression exists on the ridht side of
an eaual sidn. :

Number of right Parenthesis exceeds number of left
rarenthesis.
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406 ==-- Ewpected orerator is missind.,

407 —-- In an arithmetic expression & comma maw only be used
to delimit the arduments of a function.

410 ——— The indicated SPEC card rarameter mas not be
specified to be nedative or zero. A default will be
surrlied.

414 —-~ The STOP time srecified is less than the START time
sreviously encountered. A default value will be

substituted.,

415 ==~ The START time srecified is dreater than the STOF
time Ppreviouslus encountered. A default value will be
substituted.

416 —-- PRTPER was specified but this rrogram has no PRINT

statements. The PRTPER will be ignored.

417 ——- PLTPER was specified but this prosram has no FLOT
statements. The PLTPER will be ignored.

501 --~ The first character of a3 variable name must be either
alrhabetic (a-z) or the %,

507 --—~ The indicated character is illesal in a variable
name. Characters other than the first must be
alehabetic (a~z)»y numeric (0-9)» the # or underscore
characters.

503 ~-— The indicated variable exceeds the maximum length of
& characters.

504 —— The indicated time subscriet is invalid. It must he
either Js Ky Ly JKr or KL.

505 ——— A variable maw not be derendent on its own rrasent
value,
506 ——— A function does not have the correct number of

arduments.

508 ~-——~ FThe time subscript for this variable is missing.
512 —~- This table name was used Previousld,
514 ~-- No eauation exists for this variablei it is therefore

undeftined.

518 ~--- Reserved wordse functionse and tables mas not be
srecified in a PRINT statement.

519 == A wvariable is esrected to otcur in Lhe oo ted
rosition.

591 ~—— The first arsument of anug TABLE function must be a
TABLE.

522 —=-= A TABLE maw onlw be used as the first arsument of 3
TABLE function.
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538

5939

944

547

540

530 -

551

559
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NITRAN does not surrort this function.

This level varisble must be diven an initisl value,

- An N eauation does not initialize a LEVEL. Its ture

has been changed to & constant.
‘intdgrl’ may only be used in a2 level equation.

A function maw not be used in a level eaquation’s; only
intedrators are rermissable.

VYariable should be unsubscristed.

- VYariable should be subscrirted 'K’,

Variable should be subscristed “JK’,

- Mariable should be subscrirted “KL’.

The indicated variable is not defined in the model
and cannot be defined in a3 RERUN.,

Chanding the value of the indicated variable will rot
affect the model during RERUN since the varizble is
not used in anw eauation.

- DT is the onlwy rarameter that may be changed durinz =

RERUN:. The indicated sarasmeter maw not be specified,

The number of elements in 2 table arraw change for a
RERUN is not consistent with the number in the
model .

The indicated variable has been epreviouslu defined as
a table.

The indicated variable has been previousls defined as
a constant.

The indicated variable has been rpreviouslu defined as
a level. /

The indicated variable has been previously defined as
an auxiliaryg.,

The indicated variable has been rreviously defined as
a rate,

The indicated variable has bheen epreviousld defined as
a surrlementary.,

A variable ture mavw not chande in 2 rerin.

TIME should be initiralized through the START
raramaeter.

The user maw nNot write an eauation for 2 rarameter.

The variable on the left of the eaual sidn has
alreadu been initislized.
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00 -

601

&02

&HO0F -

&G04
605
406
$07
608

409

410

411

703

704

L
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NDTRANZ
An eacuation canmot be writtern for TIME.

Constants maw not be used in this equation.

- Farameters may not be wused in this eaustion.

Levels maw mnot be used inm this eauatiorn.
Auxiliaries maw not be used in this eaquation.
Rates may not be used in this equation.

Surrlementaries maw not be used in this ecuation.

- This variable is used only for outrut. Tt should

have been defined as a surprlementaru.

- This variable is not wused for outrut and has no

effect on ang other variable.

A DEF card occurs faor an undefined variable,

There is an illedal character in the mumeric literal.
The exrected numeric literal string is missing.

A '+ or 8 ‘-’ sign maw arrear onlue at the start of

the mnumeric literal or the start of the exronent. It
is illedgal as used where indicated.

- Mamtisss exceeds the 8 digit limit.

- Exronent exceeds the 2 digit limit.

There is a durlicate decimal roint.

Exronent maw not contain a2 decimal soint.

- The number being exronentiated has 3 value of zero.

There is 8 durlicate exronent character.

A exeonent character is encountered bhefore the
mantisss.

Exrected mantissas is missindg.

- The exronent character is not followed by an

exronent .
The exronent is too larde or too small.

A delimiter (commar slashy or sarenthesis) is
rerested, The redundant delimeters are ignored.

FRINT cards are not allowed to have slashes.

A FRINT or FLOT card should not bedin or end with &
cComma Or s81388h

This PRINT or FLOT card contains no variables.
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705 ——— Character sequence /) or s? was encountered., NITRAN
assumes user intended )/ ar }»

704 - Two pon-consecutive oren rarentheses were
encountereds NIOTRAN assumes the second to be &
closed rarenthesis.

707 ——— There was no comma or slash after the indicated
closed rarenthesis.,

7208 ~—-— A closed rarenthesis was encountered for which there
was no oren rarenthesis.

709 ~-- A second comma was encountered after an oren
rarenthesis. A closed rarenthesis is missinmgr and
agasumed to be there.

710 --~— A slash is encountered after 3n oren rarenthesiss s
closed parenthesis is missing.

711 ——— A PRINT or FLOY card maw contain no more than ten
variables.

712 === A PRINT card mas not have an "=,

713 === A FLOT character maw be onlw one character lona.

714 -~~~ Apng character mas arrear onlw once on 2 PLOT card.

713 —~- There is no PLOT character after the indicated ecual
sidn.

Note: NDTRAN does not asccert the following as PLOT
characters! =7y 797y (’y ")’y and /',

716 -—-- Range for this FLOT series has been rreviously
defined.
717 ——= The narrow ortion allows only %5 variables on 3 FLOT

card and & on a FRINT card.
718 ~-- A table arraw should not bedgin or end with 2 comma.

719 —--~ The hizh value is missing from this rande’ the
default value will be used,.

720 ~-= A run number is exrected after 2 reriod in an outeut
variable name.

721 —--= A run number must be one character between 1 and the
number of reruns,

722 ——~ Neither parentheses nor range srecifications may
occur on 8 PRINT card.

723 =-—- PLOT characters are nat to be srecified for the
inderendent variablgeL

724 --- The comparative outrput variable maw be the onlw
variable on the autrut card.™

723 -—— The asterisk cannot arrear as a run number excert for

8 mamemanstjus Aantontd aelné .
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801

802

803

804

805

8046

201

903

704
205

299

NDTRANZ

The NARROW ortion restricts the number of varisbles
outrutted; some of the rumns will not =roduce outreut,

The inderendent variasble in this rlot is 2 constant.

This outrut card has reauested a2 run riumber that is
dreater than the number of runs in the erodgram.

This card’s equation contains mo equal sidgrn and
carnot be rrocessed.,

The table contains no elements.

A table should contazin more than one element. It
will be handled s a8 constant.

A table arraw may not contain variables op arithmetic
eMPTeSS10ONS

Only a sindle variable maw occur on the left side of
an equal sidgn.

Only 3 numeric literal is rermissible on the risht
side of this eauation.

Within an integratory only additien and subtraction
of rate variables maw occur.

Arithmetic exrressions maw not occur outside of an
intedrator.

The “INTGRL‘ function must occur immedistely after
the ecual sign in any level equation.

A level equation maw not contain numeric literals.

The only function rermissible in 2 level equation is
‘INTGRL.” .

A comruted constant or comeruted DT maw not be
redefined in a rerun.
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BRRRKKKKKK ERROR MESSAGES XKKXKKKKKK

The card tuwre indicator which bedins in column one is
riot recognized bw NDOTRAN. That card will nrot he
Frocessed.

- The indicated card is the corntinuation of a carad

whose ture was unrecodgnizable. That card will not he
Pracessed,

The indicated card exceeds the limit of Qhe
continuation rer statement and will not he Frocesserd.,

A MEND statement was encountered but a MACRD Wwas
not beind rrocessed. The MEND statement will be
igrorad,

- RUN or RERUN mode has been indicated and a2 MACKO

was being rrocessed. All of the statements for that
MACR} will be ignored.

FRINT, FLOT» Ny Sy Ay Ry L» CFLOT, MACROs MENDY a@nd

EXFND statements may mot arrear in KERUN mode. The
indicated card will be igrnored.

The indicated card contains no eauation or dats and
thereforer camrot be srocessed.

A control card may rot be continued. This card will
be idgnored.

The indicated card is a3 durlicate title control card
ard will be idnored.

The indicated control card specifies an ortion which
is rot recognized by NOTRAN.

The indicated control card reouests an option which
was rreviously srecified. This request will he
idnored.

‘No’ mayw not be spacified before an intedgration
artion.,

SPECy FPRINTs FLOT» and CPLOT cards ma< not arrFear in
a MACRD » The indicated card will be ignored,

A MACRD contasins more than 1B arsuments.

Missing rarenthese delimiter for argument list.
Argument list for MACRO is missing,

The user has slreadw defined a MACRDO with this name.

A rnew MACRD definition occurs before for last MEND
far the last MACRO.

An ardument maw not contain an arithmetic oreration.
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NOTRAN

The same dummy ardument name occurs twice.

- Excess infaormation occurs after indicsted end of

403 o

405

406

407

410

414

415

414

417

%01

MACKO or EXPND ardument list.

There was an EXFND statement encountered for an
undefined MACRU, i.e.r MACRUO rname encountered in
EXFND statement is rmeither a2 built-in MACRO ror s
user~defined MACRO.

A MACRD in an EXFND statement does mot have the
riumber of arduments recuired by either the MACKO
definition or bw the built-im MACRO reauiremerts.

An exranded statement has dererated more tham one
continuation.

A durlicate eaual sign has arreared in am arithmetic
eMFTES810M. The exrression canmot be evalustaed.

Invalid secuence of orerational sumbhols.
Missing ridght rarernthesis at end of statement.

No arithmetic exrression exists on the right side of
an equal sigEn.

Number of right rarenthesis exceeds number of left
Frarentheslis.,

Exrected orFerator is missing,.

Im an arithmetic exrression 3 comma may only be used
to delimit the arduments of a3 furnction.

The indicated SPE{ card parameter mew rnot be
specified to be nedative or rero. A default will be
surrlied.

The STOF time srecified is less tham the START time
rreviously encountered. A default value will be
substituted.

The START time srecified is greater than the STOP
time epreviously encountered. A default value will be
substituted.

FRTFER was srecified but this rrodgram has no FRINT
statements. The FRTPER will be ignored.

FLTFPER was specified but this rrodram has no PLOT
statements. The PLTFER will be idnored.

The first character of 3 varizsble name must he either
alernabetic (A-7) or the $.

The indicaeted chavacter is i1lledal in 3 variable
name. Characters other then the first must be
alrhabetic (A-Z)s numeric (0~9?)y the % or underscore
characters,




NDTRAN
303 ==- The indicaoted variasble exceeds the maximum lensth of

d characters.,

S04 e The indicated time subsceriet is invalid. It must be
either Jy Ky Ly JKy or KL.

508 ~-= & variable maw rot be derendent on its own present
value,.
904 === A function does not have the correet rumber of

arduments,

w07 -—=- The variable beind initiaslized is rot & LEVEL.

910 =-= The indicated variable maw not arrear on 3 SFEC
card,

512 -=- This table name was used rreviouslu,

316 --- No ecquation exists for this variasble? it is therefore

undefined.

218 -~ Reserved wordss, functionsr and tables maw not he
sracified in 2 FRINT statement.

21?9 --- A variable is exrected to occur in the indicated
rositionr.

520 ~-- This SFEC card rarameter has aslready beern assigred 2
value, This srecification will be idnored.

321 ~--- A table name maw only be the first ardument of a
table function,

523 —-—— NDTRAN does not surrort this function.
S24 ~~-— This level variable must be given an initial value.

926 === Variable or intedrator mav not be used as a3 function.

527 === A function msy not be used in a level eauation’ onlw
intedrators are rermissable.,

928 --— A function is used ss a variables i.e.» it has no
arguments.

5330 =-- Variable should be unsubscrirted,
932 --- Variable should be subscrirted ‘K’.
534 --- Variable should be subscrirted “JK‘.
535 —=~ Variable should be subscrirted ‘KL’

936 === The indicated variable is not defined in the model
and cannot be defimed in 2 RERLUN.

537 ~-—- Changing the value of the indicated variable will not
affect the model during RERUN since the variasble is
not used in any eauation.
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573 ~--

584 -

585 ——-

586 =-—-
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DT is the only SPEC card rarameter that maw be
chandged durind 3 RERUN. The i1ndicated rFrarameter maw
not pe srecified,

Tne number of elements in 3 table array chande for a

RERUN is not comsistent with the number in the
moardel .

The indicated variable maw not he changed inm an
eauation of this ture.

The user may not write am equation for a3 reserved
word.

The user may rnot write an ecuation for an intedrator,

The sumbol omn the left side of the eaual sidn has
gliready bheen defined as a comstant,

The sumbol om the left side of the eaual sidnm has
alrezdy been defined as 3 surprlementary.

The sumbol on the left side of the eausl sign has
s3lready been defined as an audiliary.,

The suymbol on the left side of the eausal sigrh has
already been defined as a rate.,

- The sumbol on the left side of the eual sign has

already been defined as a level,

Reserved words maw not be used in this ecuation.
Constants mav not be used in this equation.
Surrlementaries maw not be used in this equation.
Auxgiliaries maw not pe used in this eauation.

Rates mag not be used in this ecuation.

- Levels may not be used in this equation.

The sumbol on the left side of the equal sisn has
glrezdw been defimed in another constant eguation.

The indiczted level variable has bheen rreviouslw
initialized? this ecuation will be isrnored.

The sumbol on the left side of the ecqual sigan has
alreadd been defined in another surplementary
eauation.

The sumbol on the left side of the equal sizn has
already been defined in another auxiliary eauation.

The swumbol on the left side of the eaual sidn has
already been detfined in another rate eauation.

The symbol on the left side of the ecual sign has
already been defined in another level eauation.
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fhere is &n illedal character in the numeric literal.
The exrected -rumeric literzal string is missing.

A 7+ or 2 ‘' sidn maw arrear only a3t the start of
the mumeric literal or the start of the ewponent. It
is illedal as used where indicated.

Mantissa exceeds the 8 digit Llimit.

Exronent exceeds the 2 digit Limit.

There is 8 duelicate decimal roint.

Exronent maw not contein 2 decimzal roint.

The number heing exronentisted has a value of zero,

g

There i1s @ durlicate exronent character.

Are exronent character is encountered before the
mantissas.

Exrected mantissa is missing.

The exronent character is not followed bw an
erronent .

Ihe exronent is too larde or too small.

A delimiter (commar slashr or rarenthesis) is
rereated. The redundant delimeters are idgrored.

In this cardr the first delimiter should be used
throudghout to serarate the items inm this list.

A PRINT or FLOT card should not bedgin or end with a
comma or slashs

This PRINT or FLOT card contains no variables.

Character seauence /) ar ») was encountered. NDTRAN
assumes user intended »/ or J

Two non-consecutive oren rarentheses were
ancountereds NDOTRAN asssumes the second to be 3
elosed sarenthesis,

There was no comma or slash after the indicated
closed rarenthesis,

- A closed rparenthesis was encountered for which there

Wi S i gFen Farenthesis,

A second comma wss encountered after am oren
rarenthesis.,. A closed rarenthesis is missingr asnd
assumed to be there.

A slash is encountered after an oren rparenthesiss a
closed rarenthesis is missing.
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NDTRAN
FLL e A PRINT ov PLOT card maw contain no more than ten
variasbhles.
PRE e/ FPRINT card mag not have an "=,
21E e A PLOT character maw be only one charzoter lons.,
14 - Any charagcter may apraar only once on 3 FLOT card.
715 == There is no FLOT character after the indicated egqual
Si8M.

Note! NITRAN does not accert the followimg as FLOY
characters! "=’y ‘979 “{’y “Y'y ang /.

F1é& -—— Randge Tor this PLOT series has been rreviopusly
defined,

217 —--— The narrow ortion 2llows only 9 variables on & FLOT
card and & on 3 FRINT card,

501 —-— There is an eausl sign missing.

892 ~-- The table contzins no elements.

BO3 ~--- & table must contain more tham one element.

804 w-- CP 2nd TF statements maw occur only inm RERUN. This

card will he erocessed a3s a C or T card.,

Y01 -~ Withirn an intedrators onlw addition and subtraction
of rate varizbles maw occur.

P02 =~ Arithmetic exrressions mavy not occur outside of an
intedrator, '

203 ~-- All level ecuations must contasin an integrator.
204 ~—-- A level eaquation maw not corntain numeric literals.
1101--- The indicated RKERUN statement is not followed by a

valid variable change. This RERUN will not be
execitted.

1102=-— RUN andg RERUN cards maw not be conmtinued,




APPENDIX C: Execution Time Error Messages

These messages will appear during execution of a program, and
will normally halt the program execution. In each case an error
message is printed out that tells three things:

1. The statement number where the error occurred;

2. The time period when the error occurred;

3. The cause of the error.
There are 6 types of execution-time errors that are detected by
NDTRAN. In each.instance an error message is printed out with the

following form:

ERROR TYPE " 1in statement XXXXX at time = t. "
If your program attempted to divide , in an equation where the divisor
were equal to 0 (zero) , the following message would be printed out:

DIVISION BY ZERO HAS OCCURRED IN STATEMENT XXXXX AT TIME = T.

The types of error messages that can occur { will be detected are):
1. OVERFLOW HAS OCCURRED ... |
2. UNDERFLOW HAS OCCURRED ...
3. DIVISION BY ZERO HAS OCCURRED ...
4. A NEGATIVE NUMBER IS BEING RAISED TO A FRACTIONAL POWER ...
5. THE NATURAL LOG OF A NON-POSITIVE NUMBER HAS BEEN REQUESTED ...
6. THE SQUARE ROOT OF A NEGATIVE NUMBER HAS BEEN REQUESTED ...
For these six error messages a standard fixup is taken and execution
ﬁontinues. If more than 10 execution-time errors occur, then the run

will terminate.
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For NDTRAN version 1 the previous six error messages occur plus
two additional messages:

7. THE HIGH BOUND OF THE INDEPENDENT VARIABLE IS LESS THA
THE LOW BOUND IN A TABLE FUNCTION ...

8. THE VALUE OF THE INDEPENDENT VARIABLE IS OUTSIDE OF
THE SPECIFIED RANGE IN A TABLE FUNCTION ...

These two error messages will cause the run to be terminated

immediately.

m

Modifications of the Table function TABLE in NDTRAN2 make these

two messages not required.




APPENDIX D
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NDTRAN2: System Errors

1. Program is too large to compile,

2. One equation has too many operators to scan for syntax.
3. Symbol table has overflowed.

4. Numeric literal table has overflowed.

5. One equation has too many operators to compile.

6. Parenthesis nesting is too deep in an equation.

7. Insufficient disk storage is available.

8. Insufficient memory avallable for PRINT/PLOT output.

Normal correction -- reduce time of Run or increase DT.

FORM OF ERROR MESSAGE.

The error prints out as follows - normally
after the compile step:

SYSTEM ERROR: 8







INDEX

Auxiliary Equation

Card Input, Input Form

Card Input, blanks as delimiters

Card Input, key fields

Causal Loop Diagram

Cedar Lake Model

Clip Function

Comparative Plot

Comparative Print

Conserved Flow

Constant

Constant Equation

Continuation Statement

Control Card Options

Control Card Options: Defaults

Control Card Options: Defined:
Cross Reference Option
Diagnostic Warning Option
Documentation Option
GO and NOGOC Option
Integration Method Options

Object Code Option

INDEX-1

4.32

4.1, 4.2
4.2 - 4.4
4.3

4.9, 4.24
4.10

4,11, 4.26
4.15

4,12, 6.4fF
4.12




Control Card Options: Defined:
Qutput Size Option

Source Listing Option
Statistics Option
Symbol Table Listing
Title Optiaon
Control Card Options: Use I11ustrated
Delay Procedure: Information Delays
Delay Procedure: Material Delays
Diagnostic Messages: Syntax Errors
DT (solution interval)
EXPND Statement, Use Of
Feedback
Feedback Loop
Filow Diagram
Functions
Functions: List Of
Graph Scale (top of graph)
Graph Scale Options:

Automatic Scaling on First Variable

Automatic Scaling
Scaling by Definition and Default

Independent Scaling

Independent Variable Plot (scatter diagram)

Information Delay
Initial Value

Initial Value Equation
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INDEX-2

13

14

14

15

.9

16 ff

.44

.43

10, 4.16 - 4.22
4 - 3.6

.39

7, 6.1, 7.23 ff
7

3, 7.27

.23

45 - 5.46

A1




Integration Method:

Adams-Bashforth Method

Euler Method

Runge-Kutta Method

Integration Method: Tests of

Integration method: Accuracy of

Key Field, in input statement

Level Equation

Level Variable

MACRO Procedure

Material Delay
Model

: illustrated

Model Assumption

Model

NDTRAN: defined

NDTRAN: Card Input

NDTRAN: default control options

NDTRAN: Delay Procedures

NDTRAN: RERUN capability and
COMPARATIVE PLOT AND PRINT

Note Statement
PARM Statement
Plot Statement

Plot Statement

Plot Statement:

Plot Statement:

(SPEC)

: Comparative Plot
Independent Variable Plot

Plet Symbol: Default

INDEX-3

4.12, 6.44
4.12, 6.44
4.12, 6.44
6.6 ff

6.6 ff

4.2, 4.3

4.29

2.7, 3.7, 3.1
4.38

4.43 ff

1.2

2.4

2.3, 2.4, 2.7
4.1

4.2

4.6, 4.7

4.43

5.17
4.37
4.34
5.4

5.17
5.13
5.5




Plot Statement Scaling:
Automatic SCaling on First Variable
Automatic Scaling, Independent Variables
Independent Scaling |
Scaling by Definition
Scaiing by Default

Print Statement

Print Statement: Comparative Print and Rerun

Program Execution (see subscripting)

Pulse Function

Rate Equation

Rate Variable

Rerun: NDTRAN (version 1)

Rerun: NDTRANZ

Savings Account Model

Simulation

Solution Interval (DT)

Source and Sink

Specification Statement ( PARM and SPEC)

Statistics and Options

Step Function

Subscripting and Time

Supplementary Equation

Syntax Errors

Syntax Errors:
NDTRAN Version 1
NOTRANZ

INDEX-4

5.5, 5.8
5.5, 5.10
5.7, 5.1
5.6

5.7, 5.12
5.1

5.17, 5.19
3.4 - 3.15
5.23

4.30

2.7, 3.9 -3.10, 4.30
5.21, 5.22

5.17

7.12

1.3

3.4 - 3.6

3.7

4.34 - 4.35

4.14, 4.22

5.30

3.4 - 3.6, 3.11 ff
4.36

4.10, 4.11, 4.16,
4.22

Appendix B
Appendix A




System
Table Function:
defined
Explained
Calculations: within table range
Calculations: beyond table range
TABFL Function
TABHL Function
TABLE Function
TABND Function
Table behavior inside table Timits
Table behavior outside table limits
Title Option

Variables, influence in model

INDEX-5

1.1

9.35 - 5.36
5.37 - 5.39

5.35
.36

(8]

.37 - 5.39
5.40 - 5.43
4.9
2.4




